IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v200y2017icp303-314.html
   My bibliography  Save this article

Thermoelectric cooling heating unit performance under real conditions

Author

Listed:
  • Ibañez-Puy, María
  • Bermejo-Busto, Javier
  • Martín-Gómez, César
  • Vidaurre-Arbizu, Marina
  • Sacristán-Fernández, José Antonio

Abstract

A Thermoelectric Cooling-Heating Unit (TCHU) is an innovative technology that uses the thermoelectric phenomena as a heating–cooling system for buildings. In TCHU, a direct current (DC) electrical current supplies the power to a Thermoelectric Equipment (TE) heat-pump system, which can transfer heat in one direction or another depending on the current flow. The unit is integrated in the building envelope.

Suggested Citation

  • Ibañez-Puy, María & Bermejo-Busto, Javier & Martín-Gómez, César & Vidaurre-Arbizu, Marina & Sacristán-Fernández, José Antonio, 2017. "Thermoelectric cooling heating unit performance under real conditions," Applied Energy, Elsevier, vol. 200(C), pages 303-314.
  • Handle: RePEc:eee:appene:v:200:y:2017:i:c:p:303-314
    DOI: 10.1016/j.apenergy.2017.05.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917305093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.05.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Afshari, Faraz & Mandev, Emre & Muratçobanoğlu, Burak & Yetim, Ali Fatih & Ceviz, Mehmet Akif, 2023. "Experimental and numerical study on a novel fanless air-to-air solar thermoelectric refrigerator equipped with boosted heat exchanger," Renewable Energy, Elsevier, vol. 207(C), pages 253-265.
    2. Zhao, Dongliang & Lu, Xing & Fan, Tianzhu & Wu, Yuen Shing & Lou, Lun & Wang, Qiuwang & Fan, Jintu & Yang, Ronggui, 2018. "Personal thermal management using portable thermoelectrics for potential building energy saving," Applied Energy, Elsevier, vol. 218(C), pages 282-291.
    3. Ahmed, Hossam A. & Megahed, Tamer F. & Mori, Shinsuke & Nada, Sameh & Hassan, Hamdy, 2023. "Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation," Applied Energy, Elsevier, vol. 349(C).
    4. Zhao, Dongliang & Yin, Xiaobo & Xu, Jingtao & Tan, Gang & Yang, Ronggui, 2020. "Radiative sky cooling-assisted thermoelectric cooling system for building applications," Energy, Elsevier, vol. 190(C).
    5. Sun, Hongli & Lin, Borong & Lin, Zhirong & Zhu, Yingxin, 2019. "Experimental study on a novel flat-heat-pipe heating system integrated with phase change material and thermoelectric unit," Energy, Elsevier, vol. 189(C).
    6. Jan Rimbala & Jan Kyncl & Jan Koller & Ghaeth Fandi, 2024. "Utilizing Connection of Multiple Peltier Cells to Enhance the Coefficient of Performance," Energies, MDPI, vol. 17(17), pages 1-18, September.
    7. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Yu, Jinghua & Xu, Xinhua & Su, Xiaosong, 2020. "Towards net zero energy building: The application potential and adaptability of photovoltaic-thermoelectric-battery wall system," Applied Energy, Elsevier, vol. 258(C).
    8. Zuazua-Ros, Amaia & Martín-Gómez, César & Ibañez-Puy, Elia & Vidaurre-Arbizu, Marina & Gelbstein, Yaniv, 2019. "Investigation of the thermoelectric potential for heating, cooling and ventilation in buildings: Characterization options and applications," Renewable Energy, Elsevier, vol. 131(C), pages 229-239.
    9. Dhumane, Rohit & Ling, Jiazhen & Aute, Vikrant & Radermacher, Reinhard, 2017. "Portable personal conditioning systems: Transient modeling and system analysis," Applied Energy, Elsevier, vol. 208(C), pages 390-401.
    10. Cai, Yang & Wang, Lei & Ding, Wen-Tao & Liu, Di & Zhao, Fu-Yun, 2019. "Thermal performance of an active thermoelectric ventilation system applied for built space cooling: Network model and finite time thermodynamic optimization," Energy, Elsevier, vol. 170(C), pages 915-930.
    11. Chang, Chun & Wu, Zhiyong & Navarro, Helena & Li, Chuan & Leng, Guanghui & Li, Xiaoxia & Yang, Ming & Wang, Zhifeng & Ding, Yulong, 2017. "Comparative study of the transient natural convection in an underground water pit thermal storage," Applied Energy, Elsevier, vol. 208(C), pages 1162-1173.
    12. Sun, Dongfang & Shen, Limei & Sun, Miao & Yao, Yu & Chen, Huanxin & Jin, Shiping, 2018. "An effective method of evaluating the device-level thermophysical properties and performance of micro-thermoelectric coolers," Applied Energy, Elsevier, vol. 219(C), pages 93-104.
    13. Ibáñez-Puy, Elia & Martín-Gómez, César & Bermejo-Busto, Javier & Zuazua-Ros, Amaia, 2018. "Thermal and energy performance assessment of a thermoelectric heat pump integrated in an adiabatic box," Applied Energy, Elsevier, vol. 228(C), pages 681-688.
    14. Duan, Mengfan & Sun, Hongli & Lin, Borong & Wu, Yifan, 2021. "Evaluation on the applicability of thermoelectric air cooling systems for buildings with thermoelectric material optimization," Energy, Elsevier, vol. 221(C).
    15. Ma, Xiaoli & Zhang, Yufeng & Han, Zhonghe & Zang, Ningbo & Liu, Zhijian, 2023. "Performance modelling on a thermoelectric air conditioning system using high power heat sinks and promoting waste heat utilization," Energy, Elsevier, vol. 268(C).
    16. Minseong Kim & Yong-Kwon Kang & Jaewon Joung & Jae-Weon Jeong, 2022. "Cooling Performance Prediction for Hydraulic Thermoelectric Radiant Cooling Panels with Experimental Validation," Sustainability, MDPI, vol. 14(23), pages 1-17, December.
    17. Ramakrishnan Iyer & Aritra Ghosh, 2023. "Investigation of Integrated and Non-Integrated Thermoelectric Systems for Buildings—A Review," Energies, MDPI, vol. 16(19), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:200:y:2017:i:c:p:303-314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.