IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipcs0360544221022908.html
   My bibliography  Save this article

A concentrated solar spectrum splitting photovoltaic cell-thermoelectric refrigerators combined system: Definition, combined system properties and performance evaluation

Author

Listed:
  • Li, Yan

Abstract

Currently, a concentrated solar spectrum splitting photovoltaic cell driven semiconductor thermoelectric refrigerator has no relevant report. In this work, a new style model of the concentrated solar spectrum splitting photovoltaic cell-thermoelectric refrigerators (CSSPV-TERs) combined system is established. On the basis of numerical calculation and theoretical study in detail, the influences of the critical parameters on the property of the CSSPV-TERs combined system are analyzed and evaluated. The total efficiency of the CSSPV-TERs combined system is 23.4%. Meanwhile, the current density J, structural factor c and numbers of thermoelectric devices N has been optimally selected to obtain the best COP. The three critical optimal parameters, N = 7, J = 11.7 A/cm2, and c = 0.000125 cm−1, of the CSSPV-TERs combined system can be obtained, which cause the maximum COP, i.e., COPmax = 0.078. The maximum COP and total efficiency of the CSSPV-TERs combined system are superior to other thermoelectric refrigeration combined systems. The research results and new model not only can provide a valuable reference and theoretical support for the optimal design of the novel solar cell driven thermoelectric refrigeration system, but also improve the conversion efficiency of the combined system by efficiently utilizing full-spectrum solar energy.

Suggested Citation

  • Li, Yan, 2022. "A concentrated solar spectrum splitting photovoltaic cell-thermoelectric refrigerators combined system: Definition, combined system properties and performance evaluation," Energy, Elsevier, vol. 238(PC).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221022908
    DOI: 10.1016/j.energy.2021.122042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221022908
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Gan & Wang, Kai & Curt, Sara Riera & Franchetti, Benjamin & Pesmazoglou, Ioannis & Markides, Christos N., 2021. "On the performance of concentrating fluid-based spectral-splitting hybrid PV-thermal (PV-T) solar collectors," Renewable Energy, Elsevier, vol. 174(C), pages 590-605.
    2. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "One-day performance evaluation of photovoltaic-thermoelectric hybrid system," Energy, Elsevier, vol. 143(C), pages 337-346.
    3. Ravi Anant Kishore & Amin Nozariasbmarz & Bed Poudel & Mohan Sanghadasa & Shashank Priya, 2019. "Ultra-high performance wearable thermoelectric coolers with less materials," Nature Communications, Nature, vol. 10(1), pages 1-13, December.
    4. He, Wei & Zhou, Jinzhi & Hou, Jingxin & Chen, Chi & Ji, Jie, 2013. "Theoretical and experimental investigation on a thermoelectric cooling and heating system driven by solar," Applied Energy, Elsevier, vol. 107(C), pages 89-97.
    5. Zhu Liu & Dabo Guan & Scott Moore & Henry Lee & Jun Su & Qiang Zhang, 2015. "Climate policy: Steps to China's carbon peak," Nature, Nature, vol. 522(7556), pages 279-281, June.
    6. Robertson, John & Riggs, Brian & Islam, Kazi & Ji, Yaping Vera & Spitler, Christopher M. & Gupta, Naman & Krut, Dimitri & Ermer, Jim & Miller, Fletcher & Codd, Daniel & Escarra, Matthew, 2019. "Field testing of a spectrum-splitting transmissive concentrator photovoltaic module," Renewable Energy, Elsevier, vol. 139(C), pages 806-814.
    7. Pan, Yuzhuo & Lin, Bihong & Chen, Jincan, 2007. "Performance analysis and parametric optimal design of an irreversible multi-couple thermoelectric refrigerator under various operating conditions," Applied Energy, Elsevier, vol. 84(9), pages 882-892, September.
    8. Darkwa, J. & Calautit, J. & Du, D. & Kokogianakis, G., 2019. "A numerical and experimental analysis of an integrated TEG-PCM power enhancement system for photovoltaic cells," Applied Energy, Elsevier, vol. 248(C), pages 688-701.
    9. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "A novel optimal design method for concentration spectrum splitting photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 163(C), pages 519-532.
    10. Dai, Y.J. & Wang, R.Z. & Ni, L., 2003. "Experimental investigation on a thermoelectric refrigerator driven by solar cells," Renewable Energy, Elsevier, vol. 28(6), pages 949-959.
    11. Li, Guiqiang & Shittu, Samson & zhou, Kai & Zhao, Xudong & Ma, Xiaoli, 2019. "Preliminary experiment on a novel photovoltaic-thermoelectric system in summer," Energy, Elsevier, vol. 188(C).
    12. Liao, Tianjun & He, Qijiao & Xu, Qidong & Dai, Yawen & Cheng, Chun & Ni, Meng, 2020. "Performance evaluation and optimization of a perovskite solar cell-thermoelectric generator hybrid system," Energy, Elsevier, vol. 201(C).
    13. Pourkiaei, Seyed Mohsen & Ahmadi, Mohammad Hossein & Sadeghzadeh, Milad & Moosavi, Soroush & Pourfayaz, Fathollah & Chen, Lingen & Pour Yazdi, Mohammad Arab & Kumar, Ravinder, 2019. "Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials," Energy, Elsevier, vol. 186(C).
    14. Jia, Zhijie & Lin, Boqiang, 2021. "How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective," Energy, Elsevier, vol. 233(C).
    15. Mojiri, Ahmad & Taylor, Robert & Thomsen, Elizabeth & Rosengarten, Gary, 2013. "Spectral beam splitting for efficient conversion of solar energy—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 654-663.
    16. Liao, Tianjun & He, Qijiao & Xu, Qidong & Dai, Yawen & Cheng, Chun & Ni, Meng, 2021. "Coupling properties and parametric optimization of a photovoltaic panel driven thermoelectric refrigerators system," Energy, Elsevier, vol. 220(C).
    17. Cheng, Tsung-Chieh & Cheng, Chin-Hsiang & Huang, Zhu-Zin & Liao, Guo-Chun, 2011. "Development of an energy-saving module via combination of solar cells and thermoelectric coolers for green building applications," Energy, Elsevier, vol. 36(1), pages 133-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kandil, A.A. & Awad, Mohamed M. & Sultan, Gamal I. & Salem, Mohamed S., 2022. "Investigating the performance characteristics of low concentrated photovoltaic systems utilizing a beam splitting device under variable cutoff wavelengths," Renewable Energy, Elsevier, vol. 196(C), pages 375-389.
    2. Cai, Yang & Hong, Bing-Hua & Wu, Wei-Xiong & Wang, Wei-Wei & Zhao, Fu-Yun, 2022. "Active cooling performance of a PCM-based thermoelectric device: Dynamic characteristics and parametric investigations," Energy, Elsevier, vol. 254(PB).
    3. Yusuf, Aminu & Garcia, Davide Astiaso, 2023. "Energy, exergy, economic, and environmental (4E) analyses of bifacial concentrated thermoelectric-photovoltaic systems," Energy, Elsevier, vol. 282(C).
    4. Xiong, Bowen & Zhang, Jiayao & Liao, Tianjun & Zhao, Ye & He, Zhihui & Yang, Zhimin, 2024. "Theoretical and experimental analyses and optimizations of direct coupling photovoltaic-thermoelectric systems," Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liao, Tianjun & He, Qijiao & Xu, Qidong & Dai, Yawen & Cheng, Chun & Ni, Meng, 2021. "Coupling properties and parametric optimization of a photovoltaic panel driven thermoelectric refrigerators system," Energy, Elsevier, vol. 220(C).
    2. Cai, Yang & Wang, Wei-Wei & Liu, Cheng-Wei & Ding, Wen-Tao & Liu, Di & Zhao, Fu-Yun, 2020. "Performance evaluation of a thermoelectric ventilation system driven by the concentrated photovoltaic thermoelectric generators for green building operations," Renewable Energy, Elsevier, vol. 147(P1), pages 1565-1583.
    3. He, Y. & Tao, Y.B. & Zhao, C.Y. & Yu, X.K., 2022. "Structure parameter analysis and optimization of photovoltaic-phase change material-thermoelectric coupling system under space conditions," Renewable Energy, Elsevier, vol. 200(C), pages 320-333.
    4. Liao, Tianjun & He, Qijiao & Xu, Qidong & Dai, Yawen & Cheng, Chun & Ni, Meng, 2020. "Performance evaluation and optimization of a perovskite solar cell-thermoelectric generator hybrid system," Energy, Elsevier, vol. 201(C).
    5. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Irshad, Kashif & Habib, Khairul & Basrawi, Firdaus & Saha, Bidyut Baran, 2017. "Study of a thermoelectric air duct system assisted by photovoltaic wall for space cooling in tropical climate," Energy, Elsevier, vol. 119(C), pages 504-522.
    7. Huang, Yuewu & Zhao, Yonggang, 2023. "Performance assessment of a perovskite solar cell-driven thermionic refrigerator hybrid system," Energy, Elsevier, vol. 266(C).
    8. Petru Adrian Cotfas & Daniel Tudor Cotfas, 2020. "Comprehensive Review of Methods and Instruments for Photovoltaic–Thermoelectric Generator Hybrid System Characterization," Energies, MDPI, vol. 13(22), pages 1-32, November.
    9. Liang, Huaxu & Wang, Fuqiang & Yang, Luwei & Cheng, Ziming & Shuai, Yong & Tan, Heping, 2021. "Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. He, Y. & Tao, Y.B. & Ye, H., 2023. "Periodic energy transmission and regulation of photovoltaic-phase change material-thermoelectric coupled system under space conditions," Energy, Elsevier, vol. 263(PC).
    11. Muhammad Nazri Rejab & Omar Mohd Faizan Marwah & Muhammad Akmal Johar & Mohamed Najib Ribuan, 2022. "Dual-Level Voltage Bipolar Thermal Energy Harvesting System from Solar Radiation in Malaysia," Sustainability, MDPI, vol. 14(19), pages 1-25, September.
    12. Duan, Mengfan & Sun, Hongli & Lin, Borong & Wu, Yifan, 2021. "Evaluation on the applicability of thermoelectric air cooling systems for buildings with thermoelectric material optimization," Energy, Elsevier, vol. 221(C).
    13. Liang, Tao & Fu, Tong & Hu, Cong & Chen, Xiaohang & Su, Shanhe & Chen, Jincan, 2021. "Optimum matching of photovoltaic–thermophotovoltaic cells efficiently utilizing full-spectrum solar energy," Renewable Energy, Elsevier, vol. 173(C), pages 942-952.
    14. Chen, Lingen & Lorenzini, Giulio, 2023. "Heating load, COP and exergetic efficiency optimizations for TEG-TEH combined thermoelectric device with Thomson effect and external heat transfer," Energy, Elsevier, vol. 270(C).
    15. Ahmed, Hossam A. & Megahed, Tamer F. & Mori, Shinsuke & Nada, Sameh & Hassan, Hamdy, 2023. "Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation," Applied Energy, Elsevier, vol. 349(C).
    16. Zhang, Yelin & Liu, Zhongbing & Wang, Pengcheng, 2020. "Evaluation of a stand-alone photovoltaic/thermal integrated thermoelectric water heating system," Renewable Energy, Elsevier, vol. 162(C), pages 1533-1553.
    17. Alois Resch & Robert Höller, 2021. "Electrical Efficiency Increase in CPVT Collectors by Spectral Splitting," Energies, MDPI, vol. 14(23), pages 1-18, December.
    18. Kang, Yong-Kwon & Joung, Jaewon & Kim, Minseong & Jeong, Jae-Weon, 2023. "Energy impact of heat pipe-assisted microencapsulated phase change material heat sink for photovoltaic and thermoelectric generator hybrid panel," Renewable Energy, Elsevier, vol. 207(C), pages 298-308.
    19. Liao, Tianjun & Xu, Qidong & Dai, Yawen & Cheng, Chun & He, Qijiao & Ni, Meng, 2022. "Radiative cooling-assisted thermoelectric refrigeration and power systems: Coupling properties and parametric optimization," Energy, Elsevier, vol. 242(C).
    20. Luo, Zhenyu & Zhu, Na & Hu, Pingfang & Lei, Fei & Zhang, Yaxi, 2022. "Simulation study on performance of PV-PCM-TE system for year-round analysis," Renewable Energy, Elsevier, vol. 195(C), pages 263-273.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pc:s0360544221022908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.