IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v343y2023ics0306261923004191.html
   My bibliography  Save this article

An investigation on plant cell walls during biomass pyrolysis: A histochemical perspective on engineering applications

Author

Listed:
  • Pang, Yoong Xin
  • Sharmin, Nusrat
  • Wu, Tao
  • Pang, Cheng Heng

Abstract

The large variation in biomass species, and hence lignocellulosic composition, often results in varying properties and production of pyrolytic products, i.e. bio-char, bio-oil and bio-gas. Hence, understanding of the distribution of individual lignocellulosic components in plant cell walls and its influence on cell structural evolution during pyrolysis is essential to predict biomass behaviour for different engineering applications. Bamboo shoot sections were subjected to histochemical safranin O/fast green solution staining to reveal the distribution of lignocellulosic components in the sample. Stained fresh samples were compared against pyrolysed samples under light and oil immersion microscopy to investigate the structural evolution of primary and secondary cell walls during pyrolysis. Charred samples were subsequently characterised via BET, XRD and Raman spectroscopy to further understand the influence of pyrolytic temperatures on cell transformations. This study provides insights into understanding the devolatilisation and graphitisation characteristics of individual plant cell wall and its lignocellulosic components, thus facilitating biomass selection for targeted applications in energy derivation and/or material engineering without the need of repeating chemical-intensive histochemical and pyrolysis procedures.

Suggested Citation

  • Pang, Yoong Xin & Sharmin, Nusrat & Wu, Tao & Pang, Cheng Heng, 2023. "An investigation on plant cell walls during biomass pyrolysis: A histochemical perspective on engineering applications," Applied Energy, Elsevier, vol. 343(C).
  • Handle: RePEc:eee:appene:v:343:y:2023:i:c:s0306261923004191
    DOI: 10.1016/j.apenergy.2023.121055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923004191
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lozano, E.M. & Pedersen, T.H. & Rosendahl, L.A., 2019. "Modeling of thermochemically liquefied biomass products and heat of formation for process energy assessment," Applied Energy, Elsevier, vol. 254(C).
    2. Huang, Y.F. & Chiueh, P.T. & Kuan, W.H. & Lo, S.L., 2013. "Pyrolysis kinetics of biomass from product information," Applied Energy, Elsevier, vol. 110(C), pages 1-8.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Yu-Fong & Cheng, Pei-Hsin & Chiueh, Pei-Te & Lo, Shang-Lien, 2017. "Leucaena biochar produced by microwave torrefaction: Fuel properties and energy efficiency," Applied Energy, Elsevier, vol. 204(C), pages 1018-1025.
    2. Jiang, Shengjuan & Hu, Xun & Xia, Daohong & Li, Chun-Zhu, 2016. "Formation of aromatic ring structures during the thermal treatment of mallee wood cylinders at low temperature," Applied Energy, Elsevier, vol. 183(C), pages 542-551.
    3. Borello, D. & Cedola, L. & Frangioni, G.V. & Meloni, R. & Venturini, P. & De Filippis, P. & de Caprariis, B., 2016. "Development of a numerical model for biomass packed bed pyrolysis based on experimental validation," Applied Energy, Elsevier, vol. 164(C), pages 956-962.
    4. Rezaei, Hamid & Sokhansanj, Shahab & Bi, Xiaotao & Lim, C. Jim & Lau, Anthony, 2017. "A numerical and experimental study on fast pyrolysis of single woody biomass particles," Applied Energy, Elsevier, vol. 198(C), pages 320-331.
    5. Ding, Yanming & Zhang, Juan & He, Qize & Huang, Biqing & Mao, Shaohua, 2019. "The application and validity of various reaction kinetic models on woody biomass pyrolysis," Energy, Elsevier, vol. 179(C), pages 784-791.
    6. Komeil Kohansal & Kamaldeep Sharma & Saqib Sohail Toor & Eliana Lozano Sanchez & Joscha Zimmermann & Lasse Aistrup Rosendahl & Thomas Helmer Pedersen, 2021. "Bio-Crude Production Improvement during Hydrothermal Liquefaction of Biopulp by Simultaneous Application of Alkali Catalysts and Aqueous Phase Recirculation," Energies, MDPI, vol. 14(15), pages 1-21, July.
    7. Ma, Jiao & Feng, Shuo & Shen, Xiaoqian & Zhang, Zhikun & Wang, Zhuozhi & Kong, Wenwen & Yuan, Peng & Shen, Boxiong & Mu, Lan, 2021. "Integration of the pelletization and combustion of biodried products derived from municipal organic wastes: The influences of compression temperature and pressure," Energy, Elsevier, vol. 219(C).
    8. Hu, Qiang & Shao, Jingai & Yang, Haiping & Yao, Dingding & Wang, Xianhua & Chen, Hanping, 2015. "Effects of binders on the properties of bio-char pellets," Applied Energy, Elsevier, vol. 157(C), pages 508-516.
    9. Lozano, E.M. & Pedersen, T.H. & Rosendahl, L.A., 2020. "Integration of hydrothermal liquefaction and carbon capture and storage for the production of advanced liquid biofuels with negative CO2 emissions," Applied Energy, Elsevier, vol. 279(C).
    10. Sánchez-Jiménez, Pedro E. & Rodríguez-Laguna, María del Rocío & Pérez-Maqueda, Luis A. & Criado, José M., 2014. "Comments on “Pyrolysis kinetics of biomass from product information” (Applied Energy 110 (2013) 1–8) regarding the inability to obtain meaningful kinetic parameters from a single non-isothermal curve," Applied Energy, Elsevier, vol. 125(C), pages 132-135.
    11. Lili Qian & Jun Ni & Zhiyang Xu & Bin Yu & Shuang Wang & Heng Gu & Dong Xiang, 2021. "Biocrude Production from Hydrothermal Liquefaction of Chlorella : Thermodynamic Modelling and Reactor Design," Energies, MDPI, vol. 14(20), pages 1-9, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:343:y:2023:i:c:s0306261923004191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.