IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v179y2019icp784-791.html
   My bibliography  Save this article

The application and validity of various reaction kinetic models on woody biomass pyrolysis

Author

Listed:
  • Ding, Yanming
  • Zhang, Juan
  • He, Qize
  • Huang, Biqing
  • Mao, Shaohua

Abstract

The pyrolysis of woody biomass has received extensive attention due to its importance in the thermal chemical conversion and energy utilization. Due to the complexity of actual reaction scheme, the pyrolysis of wood is generally modeled on the basis of apparent kinetic models. In this paper, six classic lumped kinetic models (Models I-VI) were applied and compared with each other to analyze their sensitivity coupled with Shuffled Complex Evolution method based on the measured thermogravimetric data. The optimized kinetic parameters were used to predict the pyrolysis process, and then verify the validity of different reaction kinetic models. The results show that the existence of second tar reaction for one-component mechanism and the refinement of reactant components for multi-component mechanism can be helpful to improve the reasonability of reaction models. Eventually, the simplest global reaction Model I and second tar reaction involved one-component Models III, IV, as well as three-component parallel reaction Model V can achieve the better compatibility of reaction kinetic models and Shuffled Complex Evolution optimization, with the acceptable efficiency to describe the pyrolysis of woody biomass.

Suggested Citation

  • Ding, Yanming & Zhang, Juan & He, Qize & Huang, Biqing & Mao, Shaohua, 2019. "The application and validity of various reaction kinetic models on woody biomass pyrolysis," Energy, Elsevier, vol. 179(C), pages 784-791.
  • Handle: RePEc:eee:energy:v:179:y:2019:i:c:p:784-791
    DOI: 10.1016/j.energy.2019.05.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219308849
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.05.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Yu-Fong & Chiueh, Pei-Te & Kuan, Wen-Hui & Lo, Shang-Lien, 2016. "Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics," Energy, Elsevier, vol. 100(C), pages 137-144.
    2. Navarro, M.V. & López, J.M. & Veses, A. & Callén, M.S. & García, T., 2018. "Kinetic study for the co-pyrolysis of lignocellulosic biomass and plastics using the distributed activation energy model," Energy, Elsevier, vol. 165(PA), pages 731-742.
    3. Huang, Y.F. & Chiueh, P.T. & Kuan, W.H. & Lo, S.L., 2013. "Pyrolysis kinetics of biomass from product information," Applied Energy, Elsevier, vol. 110(C), pages 1-8.
    4. Hossain, A.K. & Davies, P.A., 2013. "Pyrolysis liquids and gases as alternative fuels in internal combustion engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 165-189.
    5. Yang, S.I. & Wu, M.S. & Wu, C.Y., 2014. "Application of biomass fast pyrolysis part I: Pyrolysis characteristics and products," Energy, Elsevier, vol. 66(C), pages 162-171.
    6. Ding, Yanming & Zhang, Wenlong & Yu, Lei & Lu, Kaihua, 2019. "The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis," Energy, Elsevier, vol. 176(C), pages 582-588.
    7. Guo, Feiqiang & Li, Xiaolei & Wang, Yan & Liu, Yuan & Li, Tiantao & Guo, Chenglong, 2017. "Characterization of Zhundong lignite and biomass co-pyrolysis in a thermogravimetric analyzer and a fixed bed reactor," Energy, Elsevier, vol. 141(C), pages 2154-2163.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haoyu Pan & Junhui Gong, 2023. "Application of Particle Swarm Optimization (PSO) Algorithm in Determining Thermodynamics of Solid Combustibles," Energies, MDPI, vol. 16(14), pages 1-16, July.
    2. Zhang, Juan & Sun, Lulu & Zhang, Jiaqing & Ding, Yanming & Chen, Wenlu & Zhong, Yu, 2021. "Kinetic parameters estimation and reaction model modification for thermal degradation of Beizao oil shale based on thermogravimetric analysis coupled with deconvolution procedure," Energy, Elsevier, vol. 229(C).
    3. Xu, Li & Li, Shengcai & Sun, Wanghu & Ma, Xin & Cao, Shuchao, 2020. "Combustion behaviors and characteristic parameters determination of sassafras wood under different heating conditions," Energy, Elsevier, vol. 203(C).
    4. Jie Gu & Cheng Tung Chong & Guo Ren Mong & Jo-Han Ng & William Woei Fong Chong, 2023. "Determination of Pyrolysis and Kinetics Characteristics of Chicken Manure Using Thermogravimetric Analysis Coupled with Particle Swarm Optimization," Energies, MDPI, vol. 16(4), pages 1-22, February.
    5. Ding, Yanming & Huang, Biqing & Li, Kaiyuan & Du, Wenzhou & Lu, Kaihua & Zhang, Yansong, 2020. "Thermal interaction analysis of isolated hemicellulose and cellulose by kinetic parameters during biomass pyrolysis," Energy, Elsevier, vol. 195(C).
    6. Zhang, Wenlong & Zhang, Juan & Ding, Yanming & Zhou, Ru & Mao, Shaohua, 2022. "The accuracy of multiple methods for estimating the reaction order of representative thermoplastic polymers waste for energy utilization," Energy, Elsevier, vol. 239(PB).
    7. Lingna Zhong & Juan Zhang & Yanming Ding, 2020. "Energy Utilization of Algae Biomass Waste Enteromorpha Resulting in Green Tide in China: Pyrolysis Kinetic Parameters Estimation Based on Shuffled Complex Evolution," Sustainability, MDPI, vol. 12(5), pages 1-10, March.
    8. Korshunov, Alexey & Kichatov, Boris & Melnikova, Ksenia & Gubernov, Vladimir & Yakovenko, Ivan & Kiverin, Alexey & Golubkov, Alexandr, 2019. "Pyrolysis characteristics of biomass torrefied in a quiescent mineral layer," Energy, Elsevier, vol. 187(C).
    9. Salina, Fernando Henriques & Molina, Felipe Braggio & Gallego, Antonio Garrido & Palacios-Bereche, Reynaldo, 2021. "Fast pyrolysis of sugarcane straw and its integration into the conventional ethanol production process through Pinch Analysis," Energy, Elsevier, vol. 215(PA).
    10. Safavi, Aysan & Richter, Christiaan & Unnthorsson, Runar, 2023. "Revisiting the reaction scheme of slow pyrolysis of woody biomass," Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ge, Shengbo & Yek, Peter Nai Yuh & Cheng, Yoke Wang & Xia, Changlei & Wan Mahari, Wan Adibah & Liew, Rock Keey & Peng, Wanxi & Yuan, Tong-Qi & Tabatabaei, Meisam & Aghbashlo, Mortaza & Sonne, Christia, 2021. "Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: A batch to continuous approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Ding, Yanming & Huang, Biqing & Wu, Chuanbao & He, Qize & Lu, Kaihua, 2019. "Kinetic model and parameters study of lignocellulosic biomass oxidative pyrolysis," Energy, Elsevier, vol. 181(C), pages 11-17.
    3. Ali Mubarak Al-Qahtani, 2023. "A Comprehensive Review in Microwave Pyrolysis of Biomass, Syngas Production and Utilisation," Energies, MDPI, vol. 16(19), pages 1-16, September.
    4. Chen, Wei-Hsin & Lin, Bo-Jhih, 2016. "Characteristics of products from the pyrolysis of oil palm fiber and its pellets in nitrogen and carbon dioxide atmospheres," Energy, Elsevier, vol. 94(C), pages 569-578.
    5. Nawaz, Ahmad & Razzak, Shaikh Abdur, 2024. "Co-pyrolysis of biomass and different plastic waste to reduce hazardous waste and subsequent production of energy products: A review on advancement, synergies, and future prospects," Renewable Energy, Elsevier, vol. 224(C).
    6. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    7. Yang, S.I. & Hsu, T.C. & Wu, C.Y. & Chen, K.H. & Hsu, Y.L. & Li, Y.H., 2014. "Application of biomass fast pyrolysis part II: The effects that bio-pyrolysis oil has on the performance of diesel engines," Energy, Elsevier, vol. 66(C), pages 172-180.
    8. Wan Adibah Wan Mahari & Nur Fatihah Zainuddin & Wan Mohd Norsani Wan Nik & Cheng Tung Chong & Su Shiung Lam, 2016. "Pyrolysis Recovery of Waste Shipping Oil Using Microwave Heating," Energies, MDPI, vol. 9(10), pages 1-9, September.
    9. Ma, Junfang & Liu, Jiaxun & Jiang, Xiumin & Zhang, Hai, 2021. "A two-dimensional distributed activation energy model for pyrolysis of solid fuels," Energy, Elsevier, vol. 230(C).
    10. Ji, Li-Qun & Zhang, Chuang & Fang, Jing-Qi, 2017. "Economic analysis of converting of waste agricultural biomass into liquid fuel: A case study on a biofuel plant in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 224-229.
    11. Hu, Mian & Laghari, Mahmood & Cui, Baihui & Xiao, Bo & Zhang, Beiping & Guo, Dabin, 2018. "Catalytic cracking of biomass tar over char supported nickel catalyst," Energy, Elsevier, vol. 145(C), pages 228-237.
    12. Zhao, Xuebing & Liu, Wei & Deng, Yulin & Zhu, J.Y., 2017. "Low-temperature microbial and direct conversion of lignocellulosic biomass to electricity: Advances and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 268-282.
    13. Subhash Chandra & Isha Medha & Ashwani Kumar Tiwari, 2023. "The Role of Modified Biochar for the Remediation of Coal Mining-Impacted Contaminated Soil: A Review," Sustainability, MDPI, vol. 15(5), pages 1-27, February.
    14. Wang, Jiang-Jiang & Yang, Kun & Xu, Zi-Long & Fu, Chao, 2015. "Energy and exergy analyses of an integrated CCHP system with biomass air gasification," Applied Energy, Elsevier, vol. 142(C), pages 317-327.
    15. Dai, Yeming & Yang, Xinyu & Leng, Mingming, 2022. "Forecasting power load: A hybrid forecasting method with intelligent data processing and optimized artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    16. Gunerhan, Ali & Altuntas, Onder & Caliskan, Hakan, 2023. "Utilization of renewable and sustainable aviation biofuels from waste tyres for sustainable aviation transport sector," Energy, Elsevier, vol. 276(C).
    17. Singh, Rawel & Krishna, Bhavya B. & Mishra, Garima & Kumar, Jitendra & Bhaskar, Thallada, 2016. "Strategies for selection of thermo-chemical processes for the valorisation of biomass," Renewable Energy, Elsevier, vol. 98(C), pages 226-237.
    18. Wen, Yuming & Zaini, Ilman Nuran & Wang, Shule & Mu, Wangzhong & Jönsson, Pär Göran & Yang, Weihong, 2021. "Synergistic effect of the co-pyrolysis of cardboard and polyethylene: A kinetic and thermodynamic study," Energy, Elsevier, vol. 229(C).
    19. Zhang, Juan & Sun, Lulu & Zhang, Jiaqing & Ding, Yanming & Chen, Wenlu & Zhong, Yu, 2021. "Kinetic parameters estimation and reaction model modification for thermal degradation of Beizao oil shale based on thermogravimetric analysis coupled with deconvolution procedure," Energy, Elsevier, vol. 229(C).
    20. Pang, Yoong Xin & Sharmin, Nusrat & Wu, Tao & Pang, Cheng Heng, 2023. "An investigation on plant cell walls during biomass pyrolysis: A histochemical perspective on engineering applications," Applied Energy, Elsevier, vol. 343(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:179:y:2019:i:c:p:784-791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.