Availability and LCOE Analysis Considering Failure Rate and Downtime for Onshore Wind Turbines in Japan
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Mahmood Shafiee & Fateme Dinmohammadi, 2014. "An FMEA-Based Risk Assessment Approach for Wind Turbine Systems: A Comparative Study of Onshore and Offshore," Energies, MDPI, vol. 7(2), pages 1-24, February.
- Sebastian Pfaffel & Stefan Faulstich & Kurt Rohrig, 2017. "Performance and Reliability of Wind Turbines: A Review," Energies, MDPI, vol. 10(11), pages 1-27, November.
- Samet Ozturk & Vasilis Fthenakis & Stefan Faulstich, 2018. "Failure Modes, Effects and Criticality Analysis for Wind Turbines Considering Climatic Regions and Comparing Geared and Direct Drive Wind Turbines," Energies, MDPI, vol. 11(9), pages 1-18, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kikuchi, Yuka & Ishihara, Takeshi, 2023. "Assessment of capital expenditure for fixed-bottom offshore wind farms using probabilistic engineering cost model," Applied Energy, Elsevier, vol. 341(C).
- Victoria Yildirir & Eugen Rusu & Florin Onea, 2022. "Wind Energy Assessments in the Northern Romanian Coastal Environment Based on 20 Years of Data Coming from Different Sources," Sustainability, MDPI, vol. 14(7), pages 1-21, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Samet Ozturk & Vasilis Fthenakis & Stefan Faulstich, 2018. "Failure Modes, Effects and Criticality Analysis for Wind Turbines Considering Climatic Regions and Comparing Geared and Direct Drive Wind Turbines," Energies, MDPI, vol. 11(9), pages 1-18, September.
- Zhen Wang & Rongxi Wang & Wei Deng & Yong Zhao, 2022. "An Integrated Approach-Based FMECA for Risk Assessment: Application to Offshore Wind Turbine Pitch System," Energies, MDPI, vol. 15(5), pages 1-25, March.
- Yanfang Chen & Young Hoon Joo & Dongran Song, 2022. "Multi-Objective Optimisation for Large-Scale Offshore Wind Farm Based on Decoupled Groups Operation," Energies, MDPI, vol. 15(7), pages 1-24, March.
- Leimeister, Mareike & Kolios, Athanasios, 2018. "A review of reliability-based methods for risk analysis and their application in the offshore wind industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1065-1076.
- Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
- Liu, Min & Qin, Jianjun & Lu, Da-Gang & Zhang, Wei-Heng & Zhu, Jiang-Sheng & Faber, Michael Havbro, 2022. "Towards resilience of offshore wind farms: A framework and application to asset integrity management," Applied Energy, Elsevier, vol. 322(C).
- Pinheiro, E. & Bandeiras, F. & Gomes, M. & Coelho, P. & Fernandes, J., 2019. "Performance analysis of wind generators and PV systems in industrial small-scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 392-401.
- Moath Alrifaey & Tang Sai Hong & Eris Elianddy Supeni & Azizan As’arry & Chun Kit Ang, 2019. "Identification and Prioritization of Risk Factors in an Electrical Generator Based on the Hybrid FMEA Framework," Energies, MDPI, vol. 12(4), pages 1-22, February.
- Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
- Ewing, Fraser J. & Thies, Philipp R. & Shek, Jonathan & Ferreira, Claudio Bittencourt, 2020. "Probabilistic failure rate model of a tidal turbine pitch system," Renewable Energy, Elsevier, vol. 160(C), pages 987-997.
- Pinciroli, Luca & Baraldi, Piero & Ballabio, Guido & Compare, Michele & Zio, Enrico, 2022. "Optimization of the Operation and Maintenance of renewable energy systems by Deep Reinforcement Learning," Renewable Energy, Elsevier, vol. 183(C), pages 752-763.
- Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
- Stefan Botha & Nkosinathi Gule, 2022. "Design and Evaluation of a Laminated Three-Phase Rotary Transformer for DFIG Applications," Energies, MDPI, vol. 15(11), pages 1-20, June.
- Wang, L. & Kolios, A. & Liu, X. & Venetsanos, D. & Rui, C., 2022. "Reliability of offshore wind turbine support structures: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Radu Saulescu & Mircea Neagoe & Codruta Jaliu & Olimpiu Munteanu, 2021. "A Comparative Performance Analysis of Counter-Rotating Dual-Rotor Wind Turbines with Speed-Adding Increasers," Energies, MDPI, vol. 14(9), pages 1-21, May.
- Li, He & Teixeira, Angelo P. & Guedes Soares, C., 2020. "A two-stage Failure Mode and Effect Analysis of offshore wind turbines," Renewable Energy, Elsevier, vol. 162(C), pages 1438-1461.
- Leszek Kasprzyk & Andrzej Tomczewski & Robert Pietracho & Agata Mielcarek & Zbigniew Nadolny & Krzysztof Tomczewski & Grzegorz Trzmiel & Juan Alemany, 2020. "Optimization of a PV-Wind Hybrid Power Supply Structure with Electrochemical Storage Intended for Supplying a Load with Known Characteristics," Energies, MDPI, vol. 13(22), pages 1-31, November.
- Jianjun Qin & Michael Havbro Faber, 2019. "Resilience Informed Integrity Management of Wind Turbine Parks," Energies, MDPI, vol. 12(14), pages 1-19, July.
- Colli, Alessandra, 2015. "Failure mode and effect analysis for photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 804-809.
- Thomas Poulsen & Charlotte Bay Hasager, 2016. "How Expensive Is Expensive Enough? Opportunities for Cost Reductions in Offshore Wind Energy Logistics," Energies, MDPI, vol. 9(6), pages 1-23, June.
More about this item
Keywords
availability; levelized cost of energy; failure mode effect analysis; failure rate; downtime;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3528-:d:574585. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.