IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i12p3528-d574585.html
   My bibliography  Save this article

Availability and LCOE Analysis Considering Failure Rate and Downtime for Onshore Wind Turbines in Japan

Author

Listed:
  • Yuka Kikuchi

    (Department of Civil Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan)

  • Takeshi Ishihara

    (Department of Civil Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan)

Abstract

In this study, the availability and the levelized cost of energy (LCOE) are investigated considering failure rate and downtime for onshore wind turbines in Japan. The failure mode effect analysis is conducted using the wind turbine failure database collected by the New Energy and Industrial Technology Department Organization (NEDO). The normalized failure rate and downtime between Europe and Japan are comparable. The occurrence rate is similar between Europe and Japan, but the downtime in Japan is much longer than that of Europe. Three cost-reduction scenarios are then proposed to improve availability and to reduce LCOE using assumed failure rate and downtime in each mode based on the industry interview and best practices in Japan. The availability is improved from 87.4% for the baseline scenario to 92.7%, 95.5% and 96.4% for the three scenarios, and LCOE is also reduced from 13.7 Yen/kWh to 11.9, 11.0 and 10.7 Yen/kWh. Finally, the probability distributions of downtime and repair cost are obtained for each failure mode. It is found that the probability distributions of the failure modes with the shortest downtime show similar probability distributions regardless of the size of the assembly. The effects of downtime and repair-cost uncertainties on LCOE are also evaluated.

Suggested Citation

  • Yuka Kikuchi & Takeshi Ishihara, 2021. "Availability and LCOE Analysis Considering Failure Rate and Downtime for Onshore Wind Turbines in Japan," Energies, MDPI, vol. 14(12), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3528-:d:574585
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/12/3528/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/12/3528/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mahmood Shafiee & Fateme Dinmohammadi, 2014. "An FMEA-Based Risk Assessment Approach for Wind Turbine Systems: A Comparative Study of Onshore and Offshore," Energies, MDPI, vol. 7(2), pages 1-24, February.
    2. Sebastian Pfaffel & Stefan Faulstich & Kurt Rohrig, 2017. "Performance and Reliability of Wind Turbines: A Review," Energies, MDPI, vol. 10(11), pages 1-27, November.
    3. Samet Ozturk & Vasilis Fthenakis & Stefan Faulstich, 2018. "Failure Modes, Effects and Criticality Analysis for Wind Turbines Considering Climatic Regions and Comparing Geared and Direct Drive Wind Turbines," Energies, MDPI, vol. 11(9), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kikuchi, Yuka & Ishihara, Takeshi, 2023. "Assessment of capital expenditure for fixed-bottom offshore wind farms using probabilistic engineering cost model," Applied Energy, Elsevier, vol. 341(C).
    2. Victoria Yildirir & Eugen Rusu & Florin Onea, 2022. "Wind Energy Assessments in the Northern Romanian Coastal Environment Based on 20 Years of Data Coming from Different Sources," Sustainability, MDPI, vol. 14(7), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen Wang & Rongxi Wang & Wei Deng & Yong Zhao, 2022. "An Integrated Approach-Based FMECA for Risk Assessment: Application to Offshore Wind Turbine Pitch System," Energies, MDPI, vol. 15(5), pages 1-25, March.
    2. Samet Ozturk & Vasilis Fthenakis & Stefan Faulstich, 2018. "Failure Modes, Effects and Criticality Analysis for Wind Turbines Considering Climatic Regions and Comparing Geared and Direct Drive Wind Turbines," Energies, MDPI, vol. 11(9), pages 1-18, September.
    3. Yanfang Chen & Young Hoon Joo & Dongran Song, 2022. "Multi-Objective Optimisation for Large-Scale Offshore Wind Farm Based on Decoupled Groups Operation," Energies, MDPI, vol. 15(7), pages 1-24, March.
    4. Kumarasamy Palanimuthu & Ganesh Mayilsamy & Ameerkhan Abdul Basheer & Seong-Ryong Lee & Dongran Song & Young Hoon Joo, 2022. "A Review of Recent Aerodynamic Power Extraction Challenges in Coordinated Pitch, Yaw, and Torque Control of Large-Scale Wind Turbine Systems," Energies, MDPI, vol. 15(21), pages 1-27, November.
    5. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    6. Leimeister, Mareike & Kolios, Athanasios, 2018. "A review of reliability-based methods for risk analysis and their application in the offshore wind industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1065-1076.
    7. Shafiee, Mahmood, 2015. "Maintenance logistics organization for offshore wind energy: Current progress and future perspectives," Renewable Energy, Elsevier, vol. 77(C), pages 182-193.
    8. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    9. Liu, Min & Qin, Jianjun & Lu, Da-Gang & Zhang, Wei-Heng & Zhu, Jiang-Sheng & Faber, Michael Havbro, 2022. "Towards resilience of offshore wind farms: A framework and application to asset integrity management," Applied Energy, Elsevier, vol. 322(C).
    10. Alan Turnbull & Conor McKinnon & James Carrol & Alasdair McDonald, 2022. "On the Development of Offshore Wind Turbine Technology: An Assessment of Reliability Rates and Fault Detection Methods in a Changing Market," Energies, MDPI, vol. 15(9), pages 1-20, April.
    11. Pinheiro, E. & Bandeiras, F. & Gomes, M. & Coelho, P. & Fernandes, J., 2019. "Performance analysis of wind generators and PV systems in industrial small-scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 392-401.
    12. Cevasco, D. & Koukoura, S. & Kolios, A.J., 2021. "Reliability, availability, maintainability data review for the identification of trends in offshore wind energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    13. Moath Alrifaey & Tang Sai Hong & Eris Elianddy Supeni & Azizan As’arry & Chun Kit Ang, 2019. "Identification and Prioritization of Risk Factors in an Electrical Generator Based on the Hybrid FMEA Framework," Energies, MDPI, vol. 12(4), pages 1-22, February.
    14. Andrés A. Zúñiga & Alexandre Baleia & João Fernandes & Paulo Jose Da Costa Branco, 2020. "Classical Failure Modes and Effects Analysis in the Context of Smart Grid Cyber-Physical Systems," Energies, MDPI, vol. 13(5), pages 1-26, March.
    15. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    16. Ewing, Fraser J. & Thies, Philipp R. & Shek, Jonathan & Ferreira, Claudio Bittencourt, 2020. "Probabilistic failure rate model of a tidal turbine pitch system," Renewable Energy, Elsevier, vol. 160(C), pages 987-997.
    17. Samet Ozturk & Vasilis Fthenakis, 2020. "Predicting Frequency, Time-To-Repair and Costs of Wind Turbine Failures," Energies, MDPI, vol. 13(5), pages 1-25, March.
    18. Pinciroli, Luca & Baraldi, Piero & Ballabio, Guido & Compare, Michele & Zio, Enrico, 2022. "Optimization of the Operation and Maintenance of renewable energy systems by Deep Reinforcement Learning," Renewable Energy, Elsevier, vol. 183(C), pages 752-763.
    19. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    20. Stefan Botha & Nkosinathi Gule, 2022. "Design and Evaluation of a Laminated Three-Phase Rotary Transformer for DFIG Applications," Energies, MDPI, vol. 15(11), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3528-:d:574585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.