IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p763-d1585610.html
   My bibliography  Save this article

Optimal ATECO-Based Clustering and Photovoltaic System Sizing for Industrial Users in Renewable Energy Communities

Author

Listed:
  • Nicola Blasuttigh

    (Department of Engineering and Architecture, and Center for Energy, Environment and Transport Giacomo Ciamician, University of Trieste, 34127 Trieste, Italy)

  • Simone Negri

    (Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milano, Italy)

  • Alessandro Massi Pavan

    (Department of Engineering and Architecture, and Center for Energy, Environment and Transport Giacomo Ciamician, University of Trieste, 34127 Trieste, Italy)

Abstract

This paper presents a new approach to optimize the clustering of industrial users and to determine the appropriate size of photovoltaic (PV) systems in renewable energy communities (RECs). By combining data including each company’s energy consumption profiles based on its ATECO classification, existing and installable PV capacity, electricity purchase and sale costs, REC incentives, and PV installation costs, the proposed algorithm identifies the optimal clustering of industrial users to form an economically efficient REC. Additionally, the optimal PV capacity for each member is evaluated, taking into account potential constraints of the available area. As a whole, the proposed algorithm can determine which cluster of companies maximizes the REC net present value ( N P V ) without compromising the payback time ( P B T ), providing a strategic framework and aid for improving the economic performance of industrial RECs, correctly sizing the community and ensuring that PV installation and investment yields the greatest possible financial and social benefits. From the analysis of the considered case studies, it appears that the proposed clustering and sizing method allows, for the REC as a whole, for an increase in the NPV from a minimum of about 25% with no change in P B T , up to about 75% in the case of a change in P B T of up to 5 years.

Suggested Citation

  • Nicola Blasuttigh & Simone Negri & Alessandro Massi Pavan, 2025. "Optimal ATECO-Based Clustering and Photovoltaic System Sizing for Industrial Users in Renewable Energy Communities," Energies, MDPI, vol. 18(4), pages 1-29, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:763-:d:1585610
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/763/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/763/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bianchi, F.R. & Bosio, B. & Conte, F. & Massucco, S. & Mosaico, G. & Natrella, G. & Saviozzi, M., 2023. "Modelling and optimal management of renewable energy communities using reversible solid oxide cells," Applied Energy, Elsevier, vol. 334(C).
    2. Haji Bashi, Mazaher & De Tommasi, Luciano & Le Cam, Andreea & Relaño, Lorena Sánchez & Lyons, Padraig & Mundó, Joana & Pandelieva-Dimova, Ivanka & Schapp, Henrik & Loth-Babut, Karolina & Egger, Christ, 2023. "A review and mapping exercise of energy community regulatory challenges in European member states based on a survey of collective energy actors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    3. Anissa Nurdiawati & Frauke Urban, 2021. "Towards Deep Decarbonisation of Energy-Intensive Industries: A Review of Current Status, Technologies and Policies," Energies, MDPI, vol. 14(9), pages 1-33, April.
    4. Francesca Ceglia & Elisa Marrasso & Chiara Martone & Giovanna Pallotta & Carlo Roselli & Maurizio Sasso, 2023. "Towards the Decarbonization of Industrial Districts through Renewable Energy Communities: Techno-Economic Feasibility of an Italian Case Study," Energies, MDPI, vol. 16(6), pages 1-23, March.
    5. Bruno Canizes & João Costa & Diego Bairrão & Zita Vale, 2023. "Local Renewable Energy Communities: Classification and Sizing," Energies, MDPI, vol. 16(5), pages 1-26, March.
    6. Houben, Nikolaus & Cosic, Armin & Stadler, Michael & Mansoor, Muhammad & Zellinger, Michael & Auer, Hans & Ajanovic, Amela & Haas, Reinhard, 2023. "Optimal dispatch of a multi-energy system microgrid under uncertainty: A renewable energy community in Austria," Applied Energy, Elsevier, vol. 337(C).
    7. Fais, Birgit & Sabio, Nagore & Strachan, Neil, 2016. "The critical role of the industrial sector in reaching long-term emission reduction, energy efficiency and renewable targets," Applied Energy, Elsevier, vol. 162(C), pages 699-712.
    8. Francesca Ceglia & Elisa Marrasso & Carlo Roselli & Maurizio Sasso & Guido Coletta & Luigi Pellegrino, 2022. "Biomass-Based Renewable Energy Community: Economic Analysis of a Real Case Study," Energies, MDPI, vol. 15(15), pages 1-24, August.
    9. Sofia Agostinelli & Mehdi Neshat & Meysam Majidi Nezhad & Giuseppe Piras & Davide Astiaso Garcia, 2022. "Integrating Renewable Energy Sources in Italian Port Areas towards Renewable Energy Communities," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    10. Sousa, Jorge & Lagarto, João & Camus, Cristina & Viveiros, Carla & Barata, Filipe & Silva, Pedro & Alegria, Ricardo & Paraíba, Orlando, 2023. "Renewable energy communities optimal design supported by an optimization model for investment in PV/wind capacity and renewable electricity sharing," Energy, Elsevier, vol. 283(C).
    11. Sorknæs, Peter & Johannsen, Rasmus M. & Korberg, Andrei D. & Nielsen, Tore B. & Petersen, Uni R. & Mathiesen, Brian V., 2022. "Electrification of the industrial sector in 100% renewable energy scenarios," Energy, Elsevier, vol. 254(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shoaib Ahmed & Amjad Ali & Antonio D’Angola, 2024. "A Review of Renewable Energy Communities: Concepts, Scope, Progress, Challenges, and Recommendations," Sustainability, MDPI, vol. 16(5), pages 1-34, February.
    2. Barone, G. & Buonomano, A. & Cipolla, G. & Forzano, C. & Giuzio, G.F. & Russo, G., 2024. "Designing aggregation criteria for end-users integration in energy communities: Energy and economic optimisation based on hybrid neural networks models," Applied Energy, Elsevier, vol. 371(C).
    3. Kingsley Ukoba & Kehinde O. Olatunji & Eyitayo Adeoye & Tien-Chien Jen & Daniel M. Madyira, 2024. "Optimizing renewable energy systems through artificial intelligence: Review and future prospects," Energy & Environment, , vol. 35(7), pages 3833-3879, November.
    4. Johannsen, Rasmus Magni & Mathiesen, Brian Vad & Kermeli, Katerina & Crijns-Graus, Wina & Østergaard, Poul Alberg, 2023. "Exploring pathways to 100% renewable energy in European industry," Energy, Elsevier, vol. 268(C).
    5. Shoaib Ahmed & Amjad Ali & Alessandro Ciocia & Antonio D’Angola, 2024. "Technological Elements behind the Renewable Energy Community: Current Status, Existing Gap, Necessity, and Future Perspective—Overview," Energies, MDPI, vol. 17(13), pages 1-40, June.
    6. Ceglia, Francesca & Marrasso, Elisa & Roselli, Carlo & Sasso, Maurizio, 2023. "Energy and environmental assessment of a biomass-based renewable energy community including photovoltaic and hydroelectric systems," Energy, Elsevier, vol. 282(C).
    7. Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).
    8. Sun, Yong & Liu, Baoyin & Sun, Zhongrui & Yang, Ruijia, 2023. "Inter-regional cooperation in the transfers of energy-intensive industry: An evolutionary game approach," Energy, Elsevier, vol. 282(C).
    9. Gitelman, Lazar & Kozhevnikov, Mikhail & Ditenberg, Maksim, 2024. "Electrification as a factor in replacing hydrocarbon fuel," Energy, Elsevier, vol. 307(C).
    10. Peter Nagovnak & Maedeh Rahnama Mobarakeh & Christian Diendorfer & Gregor Thenius & Hans Böhm & Thomas Kienberger, 2024. "Cost-Driven Assessment of Technologies’ Potential to Reach Climate Neutrality in Energy-Intensive Industries," Energies, MDPI, vol. 17(5), pages 1-34, February.
    11. Lieberwirth, Martin & Hobbie, Hannes, 2022. "Decarbonizing the Industry Sector and its Effect on Electricity Transmission Grid Operation - Implications from a Model Based Analysis for Germany," EconStor Preprints 261839, ZBW - Leibniz Information Centre for Economics.
    12. Ning, Jiajun & Xiong, Lixin, 2024. "Analysis of the dynamic evolution process of the digital transformation of renewable energy enterprises based on the cooperative and evolutionary game model," Energy, Elsevier, vol. 288(C).
    13. Li, Wei & Jia, Zhijie, 2016. "The impact of emission trading scheme and the ratio of free quota: A dynamic recursive CGE model in China," Applied Energy, Elsevier, vol. 174(C), pages 1-14.
    14. Hamed, Mohammad M. & Mohammed, Ali & Olabi, Abdul Ghani, 2023. "Renewable energy adoption decisions in Jordan's industrial sector: Statistical analysis with unobserved heterogeneity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    15. Jinpeng Liu & Li Wang & Mohan Qiu & Jiang Zhu, 2016. "Promotion Potentiality and Optimal Strategies Analysis of Provincial Energy Efficiency in China," Sustainability, MDPI, vol. 8(8), pages 1-17, August.
    16. Alla Toktarova & Lisa Göransson & Filip Johnsson, 2021. "Design of Clean Steel Production with Hydrogen: Impact of Electricity System Composition," Energies, MDPI, vol. 14(24), pages 1-21, December.
    17. Zeyringer, Marianne & Fais, Birgit & Keppo, Ilkka & Price, James, 2018. "The potential of marine energy technologies in the UK – Evaluation from a systems perspective," Renewable Energy, Elsevier, vol. 115(C), pages 1281-1293.
    18. Shi, Mengshu & Huang, Yuansheng & Lin, Hongyu, 2023. "Research on power to hydrogen optimization and profit distribution of microgrid cluster considering shared hydrogen storage," Energy, Elsevier, vol. 264(C).
    19. Marina, A. & Spoelstra, S. & Zondag, H.A. & Wemmers, A.K., 2021. "An estimation of the European industrial heat pump market potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    20. Nweye, Kingsley & Sankaranarayanan, Siva & Nagy, Zoltan, 2023. "MERLIN: Multi-agent offline and transfer learning for occupant-centric operation of grid-interactive communities," Applied Energy, Elsevier, vol. 346(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:763-:d:1585610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.