IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v295y2021ics0306261921005183.html
   My bibliography  Save this article

Energy management for an electro-thermal renewable–based residential microgrid with energy balance forecasting and demand side management

Author

Listed:
  • Pascual, Julio
  • Arcos-Aviles, Diego
  • Ursúa, Alfredo
  • Sanchis, Pablo
  • Marroyo, Luis

Abstract

This paper proposes an energy management strategy for a residential microgrid comprising photovoltaic (PV) panels, a small wind turbine and solar thermal collectors. The microgrid can control the power exchanged with the grid thanks to a battery and a controllable electric water heater, which provide two degrees of freedom to the control strategy. As input data, the proposed control strategy uses the battery state of charge (SOC), the temperature of the hot water tank, the power of each microgrid element as well as the demand and renewable generation forecasts. By using forecasted data and by controlling the electric water heater, the strategy is able to achieve a better grid power profile while using a smaller battery than previous works, hence reducing the overall cost of the system. The strategy is tested by means of simulation with real data for one year and it is also experimentally validated in the microgrid built at the Renewable Energy Laboratory at the UPNA.

Suggested Citation

  • Pascual, Julio & Arcos-Aviles, Diego & Ursúa, Alfredo & Sanchis, Pablo & Marroyo, Luis, 2021. "Energy management for an electro-thermal renewable–based residential microgrid with energy balance forecasting and demand side management," Applied Energy, Elsevier, vol. 295(C).
  • Handle: RePEc:eee:appene:v:295:y:2021:i:c:s0306261921005183
    DOI: 10.1016/j.apenergy.2021.117062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921005183
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation," Applied Energy, Elsevier, vol. 99(C), pages 455-470.
    2. El-Sharafy, M. Zaki & Farag, Hany E.Z., 2017. "Back-feed power restoration using distributed constraint optimization in smart distribution grids clustered into microgrids," Applied Energy, Elsevier, vol. 206(C), pages 1102-1117.
    3. Arcos-Aviles, Diego & Pascual, Julio & Guinjoan, Francesc & Marroyo, Luis & Sanchis, Pablo & Marietta, Martin P., 2017. "Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting," Applied Energy, Elsevier, vol. 205(C), pages 69-84.
    4. Janko, Samantha & Johnson, Nathan G., 2020. "Reputation-based competitive pricing negotiation and power trading for grid-connected microgrid networks," Applied Energy, Elsevier, vol. 277(C).
    5. Parisio, Alessandra & Rikos, Evangelos & Tzamalis, George & Glielmo, Luigi, 2014. "Use of model predictive control for experimental microgrid optimization," Applied Energy, Elsevier, vol. 115(C), pages 37-46.
    6. Cappers, Peter & Goldman, Charles & Kathan, David, 2010. "Demand response in U.S. electricity markets: Empirical evidence," Energy, Elsevier, vol. 35(4), pages 1526-1535.
    7. Tuballa, Maria Lorena & Abundo, Michael Lochinvar, 2016. "A review of the development of Smart Grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 710-725.
    8. Julio Pascual & Pablo Sanchis & Luis Marroyo, 2014. "Implementation and Control of a Residential Electrothermal Microgrid Based on Renewable Energies, a Hybrid Storage System and Demand Side Management," Energies, MDPI, vol. 7(1), pages 1-28, January.
    9. Sreedharan, P. & Farbes, J. & Cutter, E. & Woo, C.K. & Wang, J., 2016. "Microgrid and renewable generation integration: University of California, San Diego," Applied Energy, Elsevier, vol. 169(C), pages 709-720.
    10. Comodi, Gabriele & Giantomassi, Andrea & Severini, Marco & Squartini, Stefano & Ferracuti, Francesco & Fonti, Alessandro & Nardi Cesarini, Davide & Morodo, Matteo & Polonara, Fabio, 2015. "Multi-apartment residential microgrid with electrical and thermal storage devices: Experimental analysis and simulation of energy management strategies," Applied Energy, Elsevier, vol. 137(C), pages 854-866.
    11. Velik, Rosemarie & Nicolay, Pascal, 2014. "Grid-price-dependent energy management in microgrids using a modified simulated annealing triple-optimizer," Applied Energy, Elsevier, vol. 130(C), pages 384-395.
    12. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    13. Xue, Xue & Wang, Shengwei & Sun, Yongjun & Xiao, Fu, 2014. "An interactive building power demand management strategy for facilitating smart grid optimization," Applied Energy, Elsevier, vol. 116(C), pages 297-310.
    14. Olatomiwa, Lanre & Mekhilef, Saad & Ismail, M.S. & Moghavvemi, M., 2016. "Energy management strategies in hybrid renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 821-835.
    15. Pascual, Julio & Barricarte, Javier & Sanchis, Pablo & Marroyo, Luis, 2015. "Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting," Applied Energy, Elsevier, vol. 158(C), pages 12-25.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Hang & Shang, Yitong & Niu, Songyan & Cheng, Chong & Shao, Ziyun & Jian, Linni, 2022. "Towards energy-efficient and cost-effective DC nanaogrid: A novel pseudo hierarchical architecture incorporating V2G technology for both autonomous coordination and regulated power dispatching," Applied Energy, Elsevier, vol. 313(C).
    2. Zhao, Xudong & Wang, Yibo & Liu, Chuang & Cai, Guowei & Ge, Weichun & Zhou, Jianing & Wang, Dongzhe, 2024. "Low carbon scheduling method of electric power system considering energy-intensive load regulation of electrofused magnesium and wind powerfluctuation stabilization," Applied Energy, Elsevier, vol. 357(C).
    3. Lei, Yu-Tian & Ma, Chao-Qun & Mirza, Nawazish & Ren, Yi-Shuai & Narayan, Seema Wati & Chen, Xun-Qi, 2022. "A renewable energy microgrids trading management platform based on permissioned blockchain," Energy Economics, Elsevier, vol. 115(C).
    4. Abdellah Benallal & Nawal Cheggaga & Adrian Ilinca & Selma Tchoketch-Kebir & Camelia Ait Hammouda & Noureddine Barka, 2023. "Bayesian Inference-Based Energy Management Strategy for Techno-Economic Optimization of a Hybrid Microgrid," Energies, MDPI, vol. 17(1), pages 1-16, December.
    5. Dubravko Žigman & Stjepan Tvorić & Manuel Lonić, 2024. "Comparative PSO Optimisation of Microgrid Management Models in Island Operation to Minimise Cost," Energies, MDPI, vol. 17(16), pages 1-19, August.
    6. Víctor Sanz i López & Ramon Costa-Castelló & Carles Batlle, 2022. "Literature Review of Energy Management in Combined Heat and Power Systems Based on High-Temperature Proton Exchange Membrane Fuel Cells for Residential Comfort Applications," Energies, MDPI, vol. 15(17), pages 1-22, September.
    7. Hossein Azarinfar & Mohsen Khosravi & Kiomars Sabzevari & Maciej Dzikuć, 2024. "Stochastic Economic–Resilience Management of Combined Cooling, Heat, and Power-Based Microgrids in a Multi-Objective Approach," Sustainability, MDPI, vol. 16(3), pages 1-28, January.
    8. Romain Mannini & Julien Eynard & Stéphane Grieu, 2022. "A Survey of Recent Advances in the Smart Management of Microgrids and Networked Microgrids," Energies, MDPI, vol. 15(19), pages 1-37, September.
    9. Elkholy, M.H. & Metwally, Hamid & Farahat, M.A. & Senjyu, Tomonobu & Elsayed Lotfy, Mohammed, 2022. "Smart centralized energy management system for autonomous microgrid using FPGA," Applied Energy, Elsevier, vol. 317(C).
    10. Mahmoud M. Hussein & Mohamed Nasr Abdel Hamid & Tarek Hassan Mohamed & Ibrahim M. Al-Helal & Abdullah Alsadon & Ammar M. Hassan, 2024. "Advanced Frequency Control Technique Using GTO with Balloon Effect for Microgrids with Photovoltaic Source to Lower Harmful Emissions and Protect Environment," Sustainability, MDPI, vol. 16(2), pages 1-20, January.
    11. Abulanwar, Sayed & Ghanem, Abdelhady & Rizk, Mohammad E.M. & Hu, Weihao, 2021. "Adaptive synergistic control strategy for a hybrid AC/DC microgrid during normal operation and contingencies," Applied Energy, Elsevier, vol. 304(C).
    12. Yin, Linfei & Cao, Xinghui & Liu, Dongduan, 2023. "Weighted fully-connected regression networks for one-day-ahead hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 332(C).
    13. Erdinç, Fatma Gülşen, 2023. "Rolling horizon optimization based real-time energy management of a residential neighborhood considering PV and ESS usage fairness," Applied Energy, Elsevier, vol. 344(C).
    14. Marina A. Nevskaya & Semen M. Raikhlin & Victoriya V. Vinogradova & Victor V. Belyaev & Mark M. Khaikin, 2023. "A Study of Factors Affecting National Energy Efficiency," Energies, MDPI, vol. 16(13), pages 1-14, July.
    15. Hanieh Agharazi & Marija D. Prica & Kenneth A. Loparo, 2022. "A Two-Level Model Predictive Control-Based Approach for Building Energy Management including Photovoltaics, Energy Storage, Solar Forecasting and Building Loads," Energies, MDPI, vol. 15(10), pages 1-21, May.
    16. Romain Mannini & Tejaswinee Darure & Julien Eynard & Stéphane Grieu, 2024. "Predictive Energy Management of a Building-Integrated Microgrid: A Case Study," Energies, MDPI, vol. 17(6), pages 1-35, March.
    17. Ferahtia, Seydali & Rezk, Hegazy & Abdelkareem, Mohammad Ali & Olabi, A.G., 2022. "Optimal techno-economic energy management strategy for building’s microgrids based bald eagle search optimization algorithm," Applied Energy, Elsevier, vol. 306(PB).
    18. Çimen, Halil & Bazmohammadi, Najmeh & Lashab, Abderezak & Terriche, Yacine & Vasquez, Juan C. & Guerrero, Josep M., 2022. "An online energy management system for AC/DC residential microgrids supported by non-intrusive load monitoring," Applied Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pascual, Julio & Barricarte, Javier & Sanchis, Pablo & Marroyo, Luis, 2015. "Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting," Applied Energy, Elsevier, vol. 158(C), pages 12-25.
    2. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    3. de la Hoz, Jordi & Martín, Helena & Alonso, Alex & Carolina Luna, Adriana & Matas, José & Vasquez, Juan C. & Guerrero, Josep M., 2019. "Regulatory-framework-embedded energy management system for microgrids: The case study of the Spanish self-consumption scheme," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    5. Danny Espín-Sarzosa & Rodrigo Palma-Behnke & Oscar Núñez-Mata, 2020. "Energy Management Systems for Microgrids: Main Existing Trends in Centralized Control Architectures," Energies, MDPI, vol. 13(3), pages 1-32, January.
    6. Zhang, Jingrui & Wu, Yihong & Guo, Yiran & Wang, Bo & Wang, Hengyue & Liu, Houde, 2016. "A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints," Applied Energy, Elsevier, vol. 183(C), pages 791-804.
    7. Sreedharan, P. & Farbes, J. & Cutter, E. & Woo, C.K. & Wang, J., 2016. "Microgrid and renewable generation integration: University of California, San Diego," Applied Energy, Elsevier, vol. 169(C), pages 709-720.
    8. Jin, Ming & Feng, Wei & Liu, Ping & Marnay, Chris & Spanos, Costas, 2017. "MOD-DR: Microgrid optimal dispatch with demand response," Applied Energy, Elsevier, vol. 187(C), pages 758-776.
    9. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    10. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2015. "Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule," Applied Energy, Elsevier, vol. 149(C), pages 194-203.
    11. Pinciroli, Luca & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2023. "Optimal operation and maintenance of energy storage systems in grid-connected microgrids by deep reinforcement learning," Applied Energy, Elsevier, vol. 352(C).
    12. Velik, Rosemarie & Nicolay, Pascal, 2014. "Grid-price-dependent energy management in microgrids using a modified simulated annealing triple-optimizer," Applied Energy, Elsevier, vol. 130(C), pages 384-395.
    13. Rafal Dzikowski, 2020. "DSO–TSO Coordination of Day-Ahead Operation Planning with the Use of Distributed Energy Resources," Energies, MDPI, vol. 13(14), pages 1-25, July.
    14. Sadaqat Ali & Zhixue Zheng & Michel Aillerie & Jean-Paul Sawicki & Marie-Cécile Péra & Daniel Hissel, 2021. "A Review of DC Microgrid Energy Management Systems Dedicated to Residential Applications," Energies, MDPI, vol. 14(14), pages 1-26, July.
    15. Hossein Azarinfar & Mohsen Khosravi & Kiomars Sabzevari & Maciej Dzikuć, 2024. "Stochastic Economic–Resilience Management of Combined Cooling, Heat, and Power-Based Microgrids in a Multi-Objective Approach," Sustainability, MDPI, vol. 16(3), pages 1-28, January.
    16. Solanke, Tirupati U. & Khatua, Pradeep K. & Ramachandaramurthy, Vigna K. & Yong, Jia Ying & Tan, Kang Miao, 2021. "Control and management of a multilevel electric vehicles infrastructure integrated with distributed resources: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Shin, Joohyun & Lee, Jay H. & Realff, Matthew J., 2017. "Operational planning and optimal sizing of microgrid considering multi-scale wind uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 616-633.
    18. Oussama Ouramdane & Elhoussin Elbouchikhi & Yassine Amirat & Ehsan Sedgh Gooya, 2021. "Optimal Sizing and Energy Management of Microgrids with Vehicle-to-Grid Technology: A Critical Review and Future Trends," Energies, MDPI, vol. 14(14), pages 1-45, July.
    19. Haddadian, Hossein & Noroozian, Reza, 2017. "Multi-microgrids approach for design and operation of future distribution networks based on novel technical indices," Applied Energy, Elsevier, vol. 185(P1), pages 650-663.
    20. Jin, Ming & Feng, Wei & Marnay, Chris & Spanos, Costas, 2018. "Microgrid to enable optimal distributed energy retail and end-user demand response," Applied Energy, Elsevier, vol. 210(C), pages 1321-1335.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:295:y:2021:i:c:s0306261921005183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.