IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v327y2022ics0306261922013551.html
   My bibliography  Save this article

Towards more accurate and explainable supervised learning-based prediction of deliverability for underground natural gas storage

Author

Listed:
  • Ali, Aliyuda
  • Aliyuda, Kachalla
  • Elmitwally, Nouh
  • Muhammad Bello, Abdulwahab

Abstract

Numerous subsurface factors, including geology and fluid properties, can affect the connectivity of the storage spaces in depleted reservoirs; hence, fluid flow simulations become more complicated, and predicting their deliverability remains challenging. This paper applies Machine Learning (ML) techniques to predict the deliverability of underground natural gas storage (UNGS) in depleted reservoirs. First, three baseline models were developed based on Support Vector Regression (SVR), Artificial Neural Network (ANN), and Random Forest (RF) algorithms. To improve the accuracy of the RF model as the best-performing baseline model, a unified framework, referred to as SARF, was developed. SARF combines the capabilities of Sparse Autoencoder (SA) and that of Random Forest (RF). To achieve this, the internal representations of the SA, which constitute extracted features of the input variables, are used in RF to develop the proposed SARF framework. The predictive capabilities of the baseline models and the proposed SARF model were validated using 3744 real-world storage data samples of 52 active storage reservoirs in the United States. The experimental result of this study shows that the proposed SARF model achieved an average 5.7% increase in accuracy on four separate data partitions over the baseline RF model. Furthermore, a set of eXplainable Artificial Intelligence (XAI) methods were developed to provide an intuitive explanation of which factors influence the deliverability of reservoir storage. The visualizations developed using the XAI method provide an easy-to-understand interpretation of how the SARF model predicted the deliverability values for separate reservoirs.

Suggested Citation

  • Ali, Aliyuda & Aliyuda, Kachalla & Elmitwally, Nouh & Muhammad Bello, Abdulwahab, 2022. "Towards more accurate and explainable supervised learning-based prediction of deliverability for underground natural gas storage," Applied Energy, Elsevier, vol. 327(C).
  • Handle: RePEc:eee:appene:v:327:y:2022:i:c:s0306261922013551
    DOI: 10.1016/j.apenergy.2022.120098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922013551
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francesca Verga, 2018. "What’s Conventional and What’s Special in a Reservoir Study for Underground Gas Storage," Energies, MDPI, vol. 11(5), pages 1-22, May.
    2. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    3. Wenninger, Simon & Kaymakci, Can & Wiethe, Christian, 2022. "Explainable long-term building energy consumption prediction using QLattice," Applied Energy, Elsevier, vol. 308(C).
    4. Svetozarevic, B. & Baumann, C. & Muntwiler, S. & Di Natale, L. & Zeilinger, M.N. & Heer, P., 2022. "Data-driven control of room temperature and bidirectional EV charging using deep reinforcement learning: Simulations and experiments," Applied Energy, Elsevier, vol. 307(C).
    5. Ali, Aliyuda, 2021. "Data-driven based machine learning models for predicting the deliverability of underground natural gas storage in salt caverns," Energy, Elsevier, vol. 229(C).
    6. Arjunan, Pandarasamy & Poolla, Kameshwar & Miller, Clayton, 2020. "EnergyStar++: Towards more accurate and explanatory building energy benchmarking," Applied Energy, Elsevier, vol. 276(C).
    7. Hu, Yuqing & Cheng, Xiaoyuan & Wang, Suhang & Chen, Jianli & Zhao, Tianxiang & Dai, Enyan, 2022. "Times series forecasting for urban building energy consumption based on graph convolutional network," Applied Energy, Elsevier, vol. 307(C).
    8. Mitrentsis, Georgios & Lens, Hendrik, 2022. "An interpretable probabilistic model for short-term solar power forecasting using natural gradient boosting," Applied Energy, Elsevier, vol. 309(C).
    9. Tsoumalis, Georgios I. & Bampos, Zafeirios N. & Biskas, Pandelis N. & Keranidis, Stratos D. & Symeonidis, Polychronis A. & Voulgarakis, Dimitrios K., 2022. "A novel system for providing explicit demand response from domestic natural gas boilers," Applied Energy, Elsevier, vol. 317(C).
    10. Yang, Wangwang & Shi, Jing & Li, Shujian & Song, Zhaofang & Zhang, Zitong & Chen, Zexu, 2022. "A combined deep learning load forecasting model of single household resident user considering multi-time scale electricity consumption behavior," Applied Energy, Elsevier, vol. 307(C).
    11. O'Shea, Richard & Lin, Richen & Wall, David M. & Browne, James D. & Murphy, Jerry D, 2020. "Using biogas to reduce natural gas consumption and greenhouse gas emissions at a large distillery," Applied Energy, Elsevier, vol. 279(C).
    12. Zhou, Xinlei & Lin, Wenye & Kumar, Ritunesh & Cui, Ping & Ma, Zhenjun, 2022. "A data-driven strategy using long short term memory models and reinforcement learning to predict building electricity consumption," Applied Energy, Elsevier, vol. 306(PB).
    13. Chen, Qi & Kuang, Zhonghong & Liu, Xiaohua & Zhang, Tao, 2022. "Energy storage to solve the diurnal, weekly, and seasonal mismatch and achieve zero-carbon electricity consumption in buildings," Applied Energy, Elsevier, vol. 312(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jaeseok Yun & Sungyeon Kim & Jinmin Kim, 2024. "Digital Twin Technology in the Gas Industry: A Comparative Simulation Study," Sustainability, MDPI, vol. 16(14), pages 1-29, July.
    2. Xiao, Ludi & Zhou, Peng & Bai, Yang & Zhang, Kai, 2024. "Modeling the dynamic allocation problem of multi-service storage system with strategy learning," Energy, Elsevier, vol. 302(C).
    3. Qiao, Weibiao & Fu, Zonghua & Du, Mingjun & Nan, Wei & Liu, Enbin, 2023. "Seasonal peak load prediction of underground gas storage using a novel two-stage model combining improved complete ensemble empirical mode decomposition and long short-term memory with a sparrow searc," Energy, Elsevier, vol. 274(C).
    4. He, Youwei & Wang, Ning & Tang, Yong & Tang, Liangrui & He, Zhiyue & Rui, Zhenhua, 2024. "Formation-water evaporation and salt precipitation mechanism in porous media under movable water conditions in underground gas storage," Energy, Elsevier, vol. 286(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2024. "An interpretable framework for modeling global solar radiation using tree-based ensemble machine learning and Shapley additive explanations methods," Applied Energy, Elsevier, vol. 364(C).
    2. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    3. Ali, Aliyuda, 2021. "Data-driven based machine learning models for predicting the deliverability of underground natural gas storage in salt caverns," Energy, Elsevier, vol. 229(C).
    4. Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2023. "Assessment of solar radiation resource and photovoltaic power potential across China based on optimized interpretable machine learning model and GIS-based approaches," Applied Energy, Elsevier, vol. 339(C).
    5. dos Santos Ferreira, Greicili & Martins dos Santos, Deilson & Luciano Avila, Sérgio & Viana Luiz Albani, Vinicius & Cardoso Orsi, Gustavo & Cesar Cordeiro Vieira, Pedro & Nilson Rodrigues, Rafael, 2023. "Short- and long-term forecasting for building energy consumption considering IPMVP recommendations, WEO and COP27 scenarios," Applied Energy, Elsevier, vol. 339(C).
    6. Ayas Shaqour & Aya Hagishima, 2022. "Systematic Review on Deep Reinforcement Learning-Based Energy Management for Different Building Types," Energies, MDPI, vol. 15(22), pages 1-27, November.
    7. Nikseresht, Ali & Amindavar, Hamidreza, 2024. "Energy demand forecasting using adaptive ARFIMA based on a novel dynamic structural break detection framework," Applied Energy, Elsevier, vol. 353(PA).
    8. Rui Song & Ping Zhang & Xiaomin Tian & Famu Huang & Zhiwen Li & Jianjun Liu, 2022. "Study on Critical Drawdown Pressure of Sanding for Wellbore of Underground Gas Storage in a Depleted Gas Reservoir," Energies, MDPI, vol. 15(16), pages 1-18, August.
    9. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    10. Trigo-González, Mauricio & Batlles, F.J. & Alonso-Montesinos, Joaquín & Ferrada, Pablo & del Sagrado, J. & Martínez-Durbán, M. & Cortés, Marcelo & Portillo, Carlos & Marzo, Aitor, 2019. "Hourly PV production estimation by means of an exportable multiple linear regression model," Renewable Energy, Elsevier, vol. 135(C), pages 303-312.
    11. Pedro, Hugo T.C. & Lim, Edwin & Coimbra, Carlos F.M., 2018. "A database infrastructure to implement real-time solar and wind power generation intra-hour forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 513-525.
    12. Miguel Ángel Rodríguez López & Diego Rodríguez Rodríguez, 2024. "La aplicación de datos masivos en economía de la energía: una revisión," Working Papers 2024-08, FEDEA.
    13. Alexandra L’Heureux & Katarina Grolinger & Miriam A. M. Capretz, 2022. "Transformer-Based Model for Electrical Load Forecasting," Energies, MDPI, vol. 15(14), pages 1-23, July.
    14. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    15. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    16. Wang, Zhenyu & Zhang, Yunpeng & Li, Guorong & Zhang, Jinlong & Zhou, Hai & Wu, Ji, 2024. "A novel solar irradiance forecasting method based on multi-physical process of atmosphere optics and LSTM-BP model," Renewable Energy, Elsevier, vol. 226(C).
    17. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    18. Stephan Schlüter & Fabian Menz & Milena Kojić & Petar Mitić & Aida Hanić, 2022. "A Novel Approach to Generate Hourly Photovoltaic Power Scenarios," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
    19. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    20. Edna S. Solano & Payman Dehghanian & Carolina M. Affonso, 2022. "Solar Radiation Forecasting Using Machine Learning and Ensemble Feature Selection," Energies, MDPI, vol. 15(19), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:327:y:2022:i:c:s0306261922013551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.