IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224013707.html
   My bibliography  Save this article

Modeling the dynamic allocation problem of multi-service storage system with strategy learning

Author

Listed:
  • Xiao, Ludi
  • Zhou, Peng
  • Bai, Yang
  • Zhang, Kai

Abstract

Gas storage, especially underground gas storage (UGS), plays a particularly important role in coping with supply disruptions. UGSs provide flexible services, e.g. firm storage service (FSS), interruptible storage service (ISS), and price hedging service (PHS), to their customers to harmonize the fluctuations in gas demand. At the beginning of each period, UGS has to allocate the overall capacity for different services for market auction. Allocation of available capacity is generally based on historical data and hands-on experience, which is operationally and economically inefficient. To address the problem, the paper developed a reinforcement learning model that captures the stochastic and dynamic features of the gas allocation problem. We study the optimal gas dispatching strategy under conditions where uncertain market states (e.g., demand load and price) exist in a continuous state space. The decision maker can improve their strategy by evaluating the expected rewards of storage actions in response to specific market states (or “learning” in the environment). In a 360-day numerical experiment, the model and algorithm demonstrate high efficiency in solving the problem. Meanwhile, several managerial implications regarding working gas volume (WGV) and agreed capacity are proposed to help improve the operational efficiency of UGS.

Suggested Citation

  • Xiao, Ludi & Zhou, Peng & Bai, Yang & Zhang, Kai, 2024. "Modeling the dynamic allocation problem of multi-service storage system with strategy learning," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224013707
    DOI: 10.1016/j.energy.2024.131597
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224013707
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131597?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224013707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.