IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v349y2023ics0306261923009650.html
   My bibliography  Save this article

A high altitude prosumer energy cooperation framework considering composite energy storage sharing and electric‑oxygen‑hydrogen flexible supply

Author

Listed:
  • Cui, Shiting
  • Wu, Jun
  • Gao, Yao
  • Zhu, Ruijin

Abstract

With the ever-increasing penetration rate of distributed renewable energy in the smart grid, the role of consumers is shifted to prosumers, and shared energy storage can be a potential measure to improve the operating income of prosumers. Nevertheless, the energy cooperation strategies of high-altitude prosumers (HAPs) are rarely studied. This study proposes an energy cooperation framework for HAPs, aiming to improve the economic flexibility of HAP operations and promote the cooperation framework. Firstly, a combined oxygen supply model for HAPs is proposed to satisfy the electricity and oxygen supply demand in high-altitude areas. Secondly, a composite energy storage provider (CESP) is introduced to provide electricity‑oxygen‑hydrogen composite energy storage sharing services and to establish an energy cooperation framework between HAPs and CESPs. Moreover, an asymmetric profit distribution model with the contributions of multiple energy sharing is proposed, and a two-stage profit distribution is carried out for CESPs and HAPs. Finally, the multi-scenario analysis and comparison are conducted to assess the overall benefits of the framework. From the research results, the proposed framework outperforms the independent HAPs, and the economic benefits, primary energy saving rate, system independence, and self-sufficiency rate have increased by 1609.91 CNY, 15.00%, 10.75%, and 15.31%, respectively. This study provides a feasible framework for energy cooperation among HAPs, and the framework's effectiveness is well-validated.

Suggested Citation

  • Cui, Shiting & Wu, Jun & Gao, Yao & Zhu, Ruijin, 2023. "A high altitude prosumer energy cooperation framework considering composite energy storage sharing and electric‑oxygen‑hydrogen flexible supply," Applied Energy, Elsevier, vol. 349(C).
  • Handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009650
    DOI: 10.1016/j.apenergy.2023.121601
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923009650
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121601?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Wenzhi & Xiao, Jiang-Wen & Cui, Shi-Chang & Liu, Xiao-Kang, 2022. "An efficient and economical storage and energy sharing model for multiple multi-energy microgrids," Energy, Elsevier, vol. 244(PB).
    2. Huang, Pei & Han, Mengjie & Zhang, Xingxing & Hussain, Syed Asad & Jayprakash Bhagat, Rohit & Hogarehalli Kumar, Deepu, 2022. "Characterization and optimization of energy sharing performances in energy-sharing communities in Sweden, Canada and Germany," Applied Energy, Elsevier, vol. 326(C).
    3. Shiting Cui & Ruijin Zhu & Yao Gao, 2022. "Distributionally Robust Optimization of an Integrated Energy System Cluster Considering the Oxygen Supply Demand and Multi-Energy Sharing," Energies, MDPI, vol. 15(22), pages 1-24, November.
    4. Wang, Dinan & Grimmelt, Michael, 2023. "Climate influence on the optimal stand-alone microgrid system with hybrid storage – A comparative study," Renewable Energy, Elsevier, vol. 208(C), pages 657-664.
    5. Javadi, Mohammad Sadegh & Gough, Matthew & Lotfi, Mohamed & Esmaeel Nezhad, Ali & Santos, Sérgio F. & Catalão, João P.S., 2020. "Optimal self-scheduling of home energy management system in the presence of photovoltaic power generation and batteries," Energy, Elsevier, vol. 210(C).
    6. Angelo Facchini, 2017. "Distributed energy resources: Planning for the future," Nature Energy, Nature, vol. 2(8), pages 1-2, August.
    7. Wu, Chuantao & Zhou, Dezhi & Lin, Xiangning & Sui, Quan & Wei, Fanrong & Li, Zhengtian, 2022. "A novel energy cooperation framework for multi-island microgrids based on marine mobile energy storage systems," Energy, Elsevier, vol. 252(C).
    8. Zhang, Wenyi & Wei, Wei & Chen, Laijun & Zheng, Boshen & Mei, Shengwei, 2020. "Service pricing and load dispatch of residential shared energy storage unit," Energy, Elsevier, vol. 202(C).
    9. Lu, Xi & Xia, Shiwei & Gu, Wei & Chan, Ka Wing, 2022. "A model for balance responsible distribution systems with energy storage to achieve coordinated load shifting and uncertainty mitigation," Energy, Elsevier, vol. 249(C).
    10. Zhang, Wen-Yi & Zheng, Boshen & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2022. "Peer-to-peer transactive mechanism for residential shared energy storage," Energy, Elsevier, vol. 246(C).
    11. Zhu, Junpeng & Meng, Dexin & Dong, Xiaofeng & Fu, Zhixin & Yuan, Yue, 2023. "An integrated electricity - hydrogen market design for renewable-rich energy system considering mobile hydrogen storage," Renewable Energy, Elsevier, vol. 202(C), pages 961-972.
    12. Keiner, Dominik & Thoma, Christian & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Seasonal hydrogen storage for residential on- and off-grid solar photovoltaics prosumer applications: Revolutionary solution or niche market for the energy transition until 2050?," Applied Energy, Elsevier, vol. 340(C).
    13. Siqin, Zhuoya & Niu, DongXiao & Li, MingYu & Gao, Tian & Lu, Yifan & Xu, Xiaomin, 2022. "Distributionally robust dispatching of multi-community integrated energy system considering energy sharing and profit allocation," Applied Energy, Elsevier, vol. 321(C).
    14. Zhou, Dezhi & Wu, Chuantao & Sui, Quan & Lin, Xiangning & Li, Zhengtian, 2022. "A novel all-electric-ship-integrated energy cooperation coalition for multi-island microgrids," Applied Energy, Elsevier, vol. 320(C).
    15. Chang, Hsiu-Chuan & Ghaddar, Bissan & Nathwani, Jatin, 2022. "Shared community energy storage allocation and optimization," Applied Energy, Elsevier, vol. 318(C).
    16. León, L.M. & Romero-Quete, D. & Merchán, N. & Cortés, C.A., 2023. "Optimal design of PV and hybrid storage based microgrids for healthcare and government facilities connected to highly intermittent utility grids," Applied Energy, Elsevier, vol. 335(C).
    17. Warren B. Powell & Abraham George & Hugo Simão & Warren Scott & Alan Lamont & Jeffrey Stewart, 2012. "SMART: A Stochastic Multiscale Model for the Analysis of Energy Resources, Technology, and Policy," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 665-682, November.
    18. Raimondi, Giulio & Spazzafumo, Giuseppe, 2023. "Exploring Renewable Energy Communities integration through a hydrogen Power-to-Power system in Italy," Renewable Energy, Elsevier, vol. 206(C), pages 710-721.
    19. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Peer-to-Peer trading with Demand Response using proposed smart bidding strategy," Applied Energy, Elsevier, vol. 327(C).
    20. Xiao, Jiang-Wen & Yang, Yan-Bing & Cui, Shichang & Liu, Xiao-Kang, 2022. "A new energy storage sharing framework with regard to both storage capacity and power capacity," Applied Energy, Elsevier, vol. 307(C).
    21. Duvignau, Romaric & Heinisch, Verena & Göransson, Lisa & Gulisano, Vincenzo & Papatriantafilou, Marina, 2021. "Benefits of small-size communities for continuous cost-optimization in peer-to-peer energy sharing," Applied Energy, Elsevier, vol. 301(C).
    22. Khaligh, Vahid & Ghezelbash, Azam & Mazidi, Mohammadreza & Liu, Jay & Ryu, Jun-Hyung, 2023. "P-robust energy management of a multi-energy microgrid enabled with energy conversions under various uncertainties," Energy, Elsevier, vol. 271(C).
    23. Chen, Yang & Park, Byungkwon & Kou, Xiao & Hu, Mengqi & Dong, Jin & Li, Fangxing & Amasyali, Kadir & Olama, Mohammed, 2020. "A comparison study on trading behavior and profit distribution in local energy transaction games," Applied Energy, Elsevier, vol. 280(C).
    24. Tushar, Wayes & Saha, Tapan Kumar & Yuen, Chau & Azim, M. Imran & Morstyn, Thomas & Poor, H. Vincent & Niyato, Dustin & Bean, Richard, 2020. "A coalition formation game framework for peer-to-peer energy trading," Applied Energy, Elsevier, vol. 261(C).
    25. Wang, Jianxiao & Zhong, Haiwang & Wu, Chenye & Du, Ershun & Xia, Qing & Kang, Chongqing, 2019. "Incentivizing distributed energy resource aggregation in energy and capacity markets: An energy sharing scheme and mechanism design," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    26. Bahlawan, Hilal & Morini, Mirko & Spina, Pier Ruggero & Venturini, Mauro, 2021. "Inventory scaling, life cycle impact assessment and design optimization of distributed energy plants," Applied Energy, Elsevier, vol. 304(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Shiting & Zhu, Ruijin & Wu, Jun, 2024. "A double layer energy cooperation framework for prosumer groups in high altitude areas," Renewable Energy, Elsevier, vol. 224(C).
    2. Cui, Shiting & Gao, Yao & Zhu, Ruijin, 2024. "A new integrated energy system cluster energy sharing framework adapted to high altitude areas," Applied Energy, Elsevier, vol. 366(C).
    3. Talihati, Baligen & Tao, Shengyu & Fu, Shiyi & Zhang, Bowen & Fan, Hongtao & Li, Qifen & Lv, Xiaodong & Sun, Yaojie & Wang, Yu, 2024. "Energy storage sharing in residential communities with controllable loads for enhanced operational efficiency and profitability," Applied Energy, Elsevier, vol. 373(C).
    4. Tang, Bao-Jun & Cao, Xi-Lin & Li, Ru & Xiang, Zhi-Bo & Zhang, Sen, 2024. "Economic and low-carbon planning for interconnected integrated energy systems considering emerging technologies and future development trends," Energy, Elsevier, vol. 302(C).
    5. Jing Yu & Jicheng Liu & Yajing Wen & Xue Yu, 2023. "Economic Optimal Coordinated Dispatch of Power for Community Users Considering Shared Energy Storage and Demand Response under Blockchain," Sustainability, MDPI, vol. 15(8), pages 1-26, April.
    6. He, Ye & Wu, Hongbin & Wu, Andrew Y. & Li, Peng & Ding, Ming, 2024. "Optimized shared energy storage in a peer-to-peer energy trading market: Two-stage strategic model regards bargaining and evolutionary game theory," Renewable Energy, Elsevier, vol. 224(C).
    7. Zhang, Wen-Yi & Chen, Yue & Wang, Yi & Xu, Yunjian, 2023. "Equilibrium analysis of a peer-to-peer energy trading market with shared energy storage in a power transmission grid," Energy, Elsevier, vol. 274(C).
    8. Wang, Dongxue & Fan, Ruguo & Yang, Peiwen & Du, Kang & Xu, Xiaoxia & Chen, Rongkai, 2024. "Research on floating real-time pricing strategy for microgrid operator in local energy market considering shared energy storage leasing," Applied Energy, Elsevier, vol. 368(C).
    9. Qiu, Rui & Zhang, Haoran & Wang, Guotao & Liang, Yongtu & Yan, Jinyue, 2023. "Green hydrogen-based energy storage service via power-to-gas technologies integrated with multi-energy microgrid," Applied Energy, Elsevier, vol. 350(C).
    10. Shi, Mengshu & Huang, Yuansheng & Lin, Hongyu, 2023. "Research on power to hydrogen optimization and profit distribution of microgrid cluster considering shared hydrogen storage," Energy, Elsevier, vol. 264(C).
    11. Xie, Xuehua & Qian, Tong & Li, Weiwei & Tang, Wenhu & Xu, Zhao, 2024. "An individualized adaptive distributed approach for fast energy-carbon coordination in transactive multi-community integrated energy systems considering power transformer loading capacity," Applied Energy, Elsevier, vol. 375(C).
    12. Chen, Yujia & Pei, Wei & Ma, Tengfei & Xiao, Hao, 2023. "Asymmetric Nash bargaining model for peer-to-peer energy transactions combined with shared energy storage," Energy, Elsevier, vol. 278(PB).
    13. Wu, Chuantao & Zhou, Dezhi & Lin, Xiangning & Sui, Quan & Wei, Fanrong & Li, Zhengtian, 2022. "A novel energy cooperation framework for multi-island microgrids based on marine mobile energy storage systems," Energy, Elsevier, vol. 252(C).
    14. Gabriele Volpato & Gianluca Carraro & Enrico Dal Cin & Sergio Rech, 2024. "On the Different Fair Allocations of Economic Benefits for Energy Communities," Energies, MDPI, vol. 17(19), pages 1-26, September.
    15. Li, Ling-Ling & Miao, Yan & Lim, Ming K. & Sethanan, Kanchana & Tseng, Ming-Lang, 2024. "Integrated energy system for low-carbon economic operation optimization: Pareto compromise programming and master-slave game," Renewable Energy, Elsevier, vol. 222(C).
    16. Zhao, Bingxu & Duan, Pengfei & Fen, Mengdan & Xue, Qingwen & Hua, Jing & Yang, Zhuoqiang, 2023. "Optimal operation of distribution networks and multiple community energy prosumers based on mixed game theory," Energy, Elsevier, vol. 278(PB).
    17. Chang, Hsiu-Chuan & Ghaddar, Bissan & Nathwani, Jatin, 2022. "Shared community energy storage allocation and optimization," Applied Energy, Elsevier, vol. 318(C).
    18. Zhong, Xiaoqing & Zhong, Weifeng & Liu, Yi & Yang, Chao & Xie, Shengli, 2022. "Cooperative operation of battery swapping stations and charging stations with electricity and carbon trading," Energy, Elsevier, vol. 254(PA).
    19. Chen, Liudong & Liu, Nian & Li, Chenchen & Zhang, Silu & Yan, Xiaohe, 2021. "Peer-to-peer energy sharing with dynamic network structures," Applied Energy, Elsevier, vol. 291(C).
    20. Gan, Wei & Yan, Mingyu & Yao, Wei & Wen, Jinyu, 2021. "Peer to peer transactive energy for multiple energy hub with the penetration of high-level renewable energy," Applied Energy, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:349:y:2023:i:c:s0306261923009650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.