IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v325y2022ics0306261922010960.html
   My bibliography  Save this article

A seismic-resilient multi-level framework for distribution network reinforcement planning considering renewable-based multi-microgrids

Author

Listed:
  • Artis, Reza
  • Assili, Mohsen
  • Shivaie, Mojtaba

Abstract

In this paper, a new resilient framework is presented for distribution network reinforcement planning (DNRP) with the consideration of renewable-based multi-microgrids (RMGs) to mitigate seismic risks. For this aim, the proposed framework is formulated as a non-convex mixed-integer nonlinear four-level optimization problem. The first level outlines a short-term corrective measures problem to remedy seismic risks using feeder reconfiguration and distributed energy resources rescheduling. The second level represents an earthquake-related catastrophic failures problem in which peak ground acceleration and distribution component vulnerability are modeled through attenuation functions and fragility curves, respectively. The third and fourth levels, however, describe coordination of a decentralized double-layer multistage microgrid reinforcement planning (MGRP) problem and a centralized cost-effective multistage DNRP problem to characterize seismic-resilient optimal reinforcement plans. Due to its desirable handling of multi-level optimization problems having a non-convex mixed-integer nonlinear nature, the multi-computational-step, multi-dimensional, multiple-homogeneous improved melody search algorithm, referred to as a symphony orchestra search algorithm (SOSA), is used to solve the proposed framework. The performance of the newly developed framework is numerically analyzed through implementing it to the standard 33-, 54-, 119- and 136-node distribution test networks. The numerical results well corroborate the sufficiency and profitableness of the proposed framework in achieving low vulnerability and high resilience to seismic risks.

Suggested Citation

  • Artis, Reza & Assili, Mohsen & Shivaie, Mojtaba, 2022. "A seismic-resilient multi-level framework for distribution network reinforcement planning considering renewable-based multi-microgrids," Applied Energy, Elsevier, vol. 325(C).
  • Handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922010960
    DOI: 10.1016/j.apenergy.2022.119824
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922010960
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119824?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mishra, Dillip Kumar & Ghadi, Mojtaba Jabbari & Azizivahed, Ali & Li, Li & Zhang, Jiangfeng, 2021. "A review on resilience studies in active distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Gilani, Mohammad Amin & Kazemi, Ahad & Ghasemi, Mostafa, 2020. "Distribution system resilience enhancement by microgrid formation considering distributed energy resources," Energy, Elsevier, vol. 191(C).
    3. Javad Najafi & Ali Peiravi & Amjad Anvari-Moghaddam, 2020. "Enhancing Integrated Power and Water Distribution Networks Seismic Resilience Leveraging Microgrids," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    4. Ibrahim Mohamed Diaaeldin & Shady H. E. Abdel Aleem & Ahmed El-Rafei & Almoataz Y. Abdelaziz & Ahmed F. Zobaa, 2019. "A Novel Graphically-Based Network Reconfiguration for Power Loss Minimization in Large Distribution Systems," Mathematics, MDPI, vol. 7(12), pages 1-17, December.
    5. Azimian, Mahdi & Amir, Vahid & Javadi, Saeid, 2020. "Economic and Environmental Policy Analysis for Emission-Neutral Multi-Carrier Microgrid Deployment," Applied Energy, Elsevier, vol. 277(C).
    6. Venkateswaran V, Balaji & Saini, Devender Kumar & Sharma, Madhu, 2021. "Techno-economic hardening strategies to enhance distribution system resilience against earthquake," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jingyao & Li, Yao & Bian, Jiayu & Yu, Zhiyong & Zhang, Min & Wang, Cheng & Bi, Tianshu, 2023. "Multi-stage resilient operation strategy of urban electric–gas system against rainstorms," Applied Energy, Elsevier, vol. 348(C).
    2. Shao, Zhentong & Cao, Xiaoyu & Zhai, Qiaozhu & Guan, Xiaohong, 2023. "Risk-constrained planning of rural-area hydrogen-based microgrid considering multiscale and multi-energy storage systems," Applied Energy, Elsevier, vol. 334(C).
    3. Artis, Reza & Shivaie, Mojtaba & Weinsier, Philip D., 2024. "A flexible urban load density-dependent framework for low-carbon distribution expansion planning in the presence of hybrid hydrogen/battery/wind/solar energy systems," Applied Energy, Elsevier, vol. 364(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Liangyu & Han, Yang & Zalhaf, Amr S. & Zhou, Siyu & Yang, Ping & Wang, Congling & Huang, Tao, 2024. "Resilience enhancement of active distribution networks under extreme disaster scenarios: A comprehensive overview of fault location strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Umunnakwe, A. & Huang, H. & Oikonomou, K. & Davis, K.R., 2021. "Quantitative analysis of power systems resilience: Standardization, categorizations, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Wang, Chong & Ju, Ping & Wu, Feng & Pan, Xueping & Wang, Zhaoyu, 2022. "A systematic review on power system resilience from the perspective of generation, network, and load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Mansouri, Seyed Amir & Nematbakhsh, Emad & Ahmarinejad, Amir & Jordehi, Ahmad Rezaee & Javadi, Mohammad Sadegh & Marzband, Mousa, 2022. "A hierarchical scheduling framework for resilience enhancement of decentralized renewable-based microgrids considering proactive actions and mobile units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Libin Yang & Zhengxi Li & Tingxiang Liu & Na An & Wanpeng Zhou & Yang Si, 2024. "Two-Stage Robust Resilience Enhancement of Distribution System against Line Failures via Hydrogen Tube Trailers," Energies, MDPI, vol. 17(20), pages 1-14, October.
    6. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    7. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski & Ibrahim Alhamrouni, 2024. "AI Applications to Enhance Resilience in Power Systems and Microgrids—A Review," Sustainability, MDPI, vol. 16(12), pages 1-35, June.
    8. Jesus Beyza & Jose M. Yusta, 2021. "Integrated Risk Assessment for Robustness Evaluation and Resilience Optimisation of Power Systems after Cascading Failures," Energies, MDPI, vol. 14(7), pages 1-18, April.
    9. Hughes, William & Zhang, Wei & Cerrai, Diego & Bagtzoglou, Amvrossios & Wanik, David & Anagnostou, Emmanouil, 2022. "A Hybrid Physics-Based and Data-Driven Model for Power Distribution System Infrastructure Hardening and Outage Simulation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    10. Štěpán Kavan & Olga Dvořáčková & Jiří Pokorný & Lenka Brumarová, 2021. "Long-Term Power Outage and Preparedness of the Population of a Region in the Czech Republic—A Case Study," Sustainability, MDPI, vol. 13(23), pages 1-14, November.
    11. Qianwen Li & Zhilong Chen & Jialin Min & Mengjie Xu & Yanhong Zhan & Wenyue Zhang & Chuanwang Sun, 2024. "Hybrid transaction model for optimizing the distributed power trading market," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    12. Tomáš Fröhlich & Zdeněk Hon & Martin Staněk & Jiří Slabý, 2023. "Method of Identification and Assessment of Security Needs of a Region against the Threat of a Large Power Outage," Energies, MDPI, vol. 16(11), pages 1-16, May.
    13. Habib, Salman & Aghakhani, Sina & Ghasempour Nejati, Mobin & Azimian, Mahdi & Jia, Youwei & Ahmed, Emad M., 2023. "Energy management of an intelligent parking lot equipped with hydrogen storage systems and renewable energy sources using the stochastic p-robust optimization approach," Energy, Elsevier, vol. 278(C).
    14. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    15. Liu, Hanchen & Wang, Chong & Ju, Ping & Li, Hongyu, 2022. "A sequentially preventive model enhancing power system resilience against extreme-weather-triggered failures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    16. Wu, Raphael & Sansavini, Giovanni, 2020. "Integrating reliability and resilience to support the transition from passive distribution grids to islanding microgrids," Applied Energy, Elsevier, vol. 272(C).
    17. Dillip Kumar Mishra & Daria Złotecka & Li Li, 2022. "Significance of SMES Devices for Power System Frequency Regulation Scheme considering Distributed Energy Resources in a Deregulated Environment," Energies, MDPI, vol. 15(5), pages 1-32, February.
    18. Gheorghe Grigoraș & Livia Noroc & Ecaterina Chelaru & Florina Scarlatache & Bogdan-Constantin Neagu & Ovidiu Ivanov & Mihai Gavrilaș, 2021. "Coordinated Control of Single-Phase End-Users for Phase Load Balancing in Active Electric Distribution Networks," Mathematics, MDPI, vol. 9(21), pages 1-29, October.
    19. Wu, Chuantao & Wang, Tao & Zhou, Dezhi & Cao, Shankang & Sui, Quan & Lin, Xiangning & Li, Zhengtian & Wei, Fanrong, 2023. "A distributed restoration framework for distribution systems incorporating electric buses," Applied Energy, Elsevier, vol. 331(C).
    20. Hughes, William & Watson, Peter L. & Cerrai, Diego & Zhang, Xinxuan & Bagtzoglou, Amvrossios & Zhang, Wei & Anagnostou, Emmanouil, 2024. "Assessing grid hardening strategies to improve power system performance during storms using a hybrid mechanistic-machine learning outage prediction model," Reliability Engineering and System Safety, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:325:y:2022:i:c:s0306261922010960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.