IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v210y2020ics036054422031608x.html
   My bibliography  Save this article

Smart Distributed Energy Storage Controller (smartDESC)

Author

Listed:
  • Malandra, F.
  • Kizilkale, A.C.
  • Sirois, F.
  • Sansò, B.
  • Anjos, M.F.
  • Bernier, M.
  • Gendreau, M.
  • Malhamé, R.P.

Abstract

While the storage properties and the anticipation potential of many classes of power system loads (such as thermal loads) can be exploited to mitigate renewable sources variability, the challenge to do so in an optimal and coherent manner is significant. This is due to the sheer number and dynamic diversity of the loads that can be involved in any large-scale application. The smartDESC concept is a control architecture that was developed for this purpose. It builds on the more pervasive communication means currently available (such as Advanced Metering Infrastructures), as well as the mathematical tools of (i) aggregate load modeling, (ii) renewable energy forecasting, (iii) optimization theory, deterministic or stochastic, and (iv) some recent developments in control of large-scale systems based on game theory, and so-called mean-field (MF) control theory, which allow a scalable yet optimal approach to the decentralized control of large pools of loads. This paper presents the building blocks of the smartDESC architecture, together with an associated simulator and simulation results.

Suggested Citation

  • Malandra, F. & Kizilkale, A.C. & Sirois, F. & Sansò, B. & Anjos, M.F. & Bernier, M. & Gendreau, M. & Malhamé, R.P., 2020. "Smart Distributed Energy Storage Controller (smartDESC)," Energy, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:energy:v:210:y:2020:i:c:s036054422031608x
    DOI: 10.1016/j.energy.2020.118500
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422031608X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118500?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lion Hirth & Inka Ziegenhagen, 2013. "Control Power and Variable Renewables A Glimpse at German Data," Working Papers 2013.46, Fondazione Eni Enrico Mattei.
    2. Hughes, Larry, 2010. "Meeting residential space heating demand with wind-generated electricity," Renewable Energy, Elsevier, vol. 35(8), pages 1765-1772.
    3. Gilani, Mohammad Amin & Kazemi, Ahad & Ghasemi, Mostafa, 2020. "Distribution system resilience enhancement by microgrid formation considering distributed energy resources," Energy, Elsevier, vol. 191(C).
    4. Kovač, Marko & Stegnar, Gašper & Al-Mansour, Fouad & Merše, Stane & Pečjak, Andrej, 2019. "Assessing solar potential and battery instalment for self-sufficient buildings with simplified model," Energy, Elsevier, vol. 173(C), pages 1182-1195.
    5. Cai, Hanmin & Thingvad, Andreas & You, Shi & Marinelli, Mattia, 2020. "Experimental evaluation of an integrated demand response program using electric heat boosters to provide multi-system services," Energy, Elsevier, vol. 193(C).
    6. Mehrjerdi, Hasan & Hemmati, Reza, 2020. "Energy and uncertainty management through domestic demand response in the residential building," Energy, Elsevier, vol. 192(C).
    7. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    8. Marczinkowski, Hannah Mareike & Østergaard, Poul Alberg, 2018. "Residential versus communal combination of photovoltaic and battery in smart energy systems," Energy, Elsevier, vol. 152(C), pages 466-475.
    9. Bostan, Alireza & Nazar, Mehrdad Setayesh & Shafie-khah, Miadreza & Catalão, João P.S., 2020. "An integrated optimization framework for combined heat and power units, distributed generation and plug-in electric vehicles," Energy, Elsevier, vol. 202(C).
    10. Ciupăgeanu, Dana-Alexandra & Lăzăroiu, Gheorghe & Barelli, Linda, 2019. "Wind energy integration: Variability analysis and power system impact assessment," Energy, Elsevier, vol. 185(C), pages 1183-1196.
    11. Xu, Xiaojing & Chen, Chien-fei & Zhu, Xiaojuan & Hu, Qinran, 2018. "Promoting acceptance of direct load control programs in the United States: Financial incentive versus control option," Energy, Elsevier, vol. 147(C), pages 1278-1287.
    12. Adham I. Tammam & Miguel F. Anjos & Michel Gendreau, 2020. "Balancing supply and demand in the presence of renewable generation via demand response for electric water heaters," Annals of Operations Research, Springer, vol. 292(2), pages 753-770, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Li & Dong, Mi & Song, Dongran & Yang, Jian & Wang, Qibing, 2022. "Distributed and real-time economic dispatch strategy for an islanded microgrid with fair participation of thermostatically controlled loads," Energy, Elsevier, vol. 261(PB).
    2. Pied, Marie & Anjos, Miguel F. & Malhamé, Roland P., 2020. "A flexibility product for electric water heater aggregators on electricity markets," Applied Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Nielsen, Tore Bach & Lund, Henrik & Østergaard, Poul Alberg & Duic, Neven & Mathiesen, Brian Vad, 2021. "Perspectives on energy efficiency and smart energy systems from the 5th SESAAU2019 conference," Energy, Elsevier, vol. 216(C).
    3. Bing Wang & Qiran Cai & Zhenming Sun, 2020. "Determinants of Willingness to Participate in Urban Incentive-Based Energy Demand-Side Response: An Empirical Micro-Data Analysis," Sustainability, MDPI, vol. 12(19), pages 1-18, September.
    4. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    5. Batalla-Bejerano, Joan & Costa-Campi, Maria Teresa & Trujillo-Baute, Elisa, 2016. "Collateral effects of liberalisation: Metering, losses, load profiles and cost settlement in Spain’s electricity system," Energy Policy, Elsevier, vol. 94(C), pages 421-431.
    6. Flavio R. Arroyo M. & Luis J. Miguel, 2019. "The Trends of the Energy Intensity and CO 2 Emissions Related to Final Energy Consumption in Ecuador: Scenarios of National and Worldwide Strategies," Sustainability, MDPI, vol. 12(1), pages 1-21, December.
    7. Hermansen, Rune & Smith, Kevin & Thorsen, Jan Eric & Wang, Jiawei & Zong, Yi, 2022. "Model predictive control for a heat booster substation in ultra low temperature district heating systems," Energy, Elsevier, vol. 238(PA).
    8. Huang, Mengdi & Chang, Jianxia & Guo, Aijun & Zhao, Mingzhe & Ye, Xiangmin & Lei, Kaixuan & Peng, Zhiwen & Wang, Yimin, 2023. "Cascade hydropower stations optimal dispatch considering flexible margin in renewable energy power system," Energy, Elsevier, vol. 285(C).
    9. Saffari, Mohammadali & Crownshaw, Timothy & McPherson, Madeleine, 2023. "Assessing the potential of demand-side flexibility to improve the performance of electricity systems under high variable renewable energy penetration," Energy, Elsevier, vol. 272(C).
    10. Fontecha, John E. & Nikolaev, Alexander & Walteros, Jose L. & Zhu, Zhenduo, 2022. "Scientists wanted? A literature review on incentive programs that promote pro-environmental consumer behavior: Energy, waste, and water," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    11. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Prosumer integration into the Brazilian energy sector: An overview of innovative business models and regulatory challenges," Energy Policy, Elsevier, vol. 161(C).
    12. Dokur, Emrah & Erdogan, Nuh & Salari, Mahdi Ebrahimi & Karakuzu, Cihan & Murphy, Jimmy, 2022. "Offshore wind speed short-term forecasting based on a hybrid method: Swarm decomposition and meta-extreme learning machine," Energy, Elsevier, vol. 248(C).
    13. Wei, Meng & Balaya, Palani & Ye, Min & Song, Ziyou, 2022. "Remaining useful life prediction for 18650 sodium-ion batteries based on incremental capacity analysis," Energy, Elsevier, vol. 261(PA).
    14. Florian Kuhnlenz & Pedro H. J. Nardelli, 2016. "Agent-based Model for Spot and Balancing Electricity Markets," Papers 1612.04512, arXiv.org.
    15. Annala, Salla & Ruggiero, Salvatore & Kangas, Hanna-Liisa & Honkapuro, Samuli & Ohrling, Tiina, 2022. "Impact of home market on business development and internationalization of demand response firms," Energy, Elsevier, vol. 242(C).
    16. Arueyingho, Oritsetimeyin & Chitchyan, Ruzanna & Bird, Caroline, 2023. "Career progression and skills in Smart Local Energy Systems," Applied Energy, Elsevier, vol. 349(C).
    17. Julien Lancelot Michellod & Declan Kuch & Christian Winzer & Martin K. Patel & Selin Yilmaz, 2022. "Building Social License for Automated Demand-Side Management—Case Study Research in the Swiss Residential Sector," Energies, MDPI, vol. 15(20), pages 1-25, October.
    18. Filippo Bovera & Giuliano Rancilio & Davide Falabretti & Marco Merlo, 2021. "Data-Driven Evaluation of Secondary- and Tertiary-Reserve Needs with High Renewables Penetration: The Italian Case," Energies, MDPI, vol. 14(8), pages 1-24, April.
    19. Younesi, Abdollah & Shayeghi, Hossein & Safari, Amin & Siano, Pierluigi, 2020. "Assessing the resilience of multi microgrid based widespread power systems against natural disasters using Monte Carlo Simulation," Energy, Elsevier, vol. 207(C).
    20. Brijs, Tom & De Vos, Kristof & De Jonghe, Cedric & Belmans, Ronnie, 2015. "Statistical analysis of negative prices in European balancing markets," Renewable Energy, Elsevier, vol. 80(C), pages 53-60.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:210:y:2020:i:c:s036054422031608x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.