IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipas0306261924013084.html
   My bibliography  Save this article

Combined cloud and electricity portfolio optimization for cloud service providers

Author

Listed:
  • Guo, Caishan
  • Luo, Fengji
  • Cai, Zexiang
  • Sun, Yuyan
  • Tang, Wenhu

Abstract

Backboned by energy-intensive Internet data centers (IDCs), cloud systems have been playing important roles in both modern information and energy systems. This paper proposes a comprehensive portfolio optimization framework to provide operational decision-making support to a cloud service provider managing networked IDCs in trading cloud and energy resources in a cloud market, multiple regional wholesale electricity markets, and multiple local electricity markets. The portfolio management logics are represented by 3 interrelated optimization models; a computational linearization approach is developed, which transforms the 3 models into a single mathematical programming problem with equilibrium constraints based on Karush–Kuhn–Tucker conditions. Extensive simulations and comparison studies are conducted to demonstrate that the proposed framework can effectively optimize the operation of networked IDCs in the combined market environment.

Suggested Citation

  • Guo, Caishan & Luo, Fengji & Cai, Zexiang & Sun, Yuyan & Tang, Wenhu, 2025. "Combined cloud and electricity portfolio optimization for cloud service providers," Applied Energy, Elsevier, vol. 377(PA).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924013084
    DOI: 10.1016/j.apenergy.2024.123925
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924013084
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zeng, Bo & Zhou, Yinyu & Xu, Xinzhu & Cai, Danting, 2024. "Bi-level planning approach for incorporating the demand-side flexibility of cloud data centers under electricity-carbon markets," Applied Energy, Elsevier, vol. 357(C).
    2. Guo, Caishan & Luo, Fengji & Cai, Zexiang & Dong, Zhao Yang & Zhang, Rui, 2021. "Integrated planning of internet data centers and battery energy storage systems in smart grids," Applied Energy, Elsevier, vol. 281(C).
    3. Fu, Yangyang & Han, Xu & Baker, Kyri & Zuo, Wangda, 2020. "Assessments of data centers for provision of frequency regulation," Applied Energy, Elsevier, vol. 277(C).
    4. Guo, Caishan & Luo, Fengji & Cai, Zexiang & Dong, Zhao Yang, 2021. "Integrated energy systems of data centers and smart grids: State-of-the-art and future opportunities," Applied Energy, Elsevier, vol. 301(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Weiqi & Zavala, Victor M., 2022. "Remunerating space–time, load-shifting flexibility from data centers in electricity markets," Applied Energy, Elsevier, vol. 326(C).
    2. Wang, Kaifeng & Ye, Lin & Yang, Shihui & Deng, Zhanfeng & Song, Jieying & Li, Zhuo & Zhao, Yongning, 2023. "A hierarchical dispatch strategy of hybrid energy storage system in internet data center with model predictive control," Applied Energy, Elsevier, vol. 331(C).
    3. Ye, Guisen & Gao, Feng & Fang, Jingyang, 2022. "A mission-driven two-step virtual machine commitment for energy saving of modern data centers through UPS and server coordinated optimizations," Applied Energy, Elsevier, vol. 322(C).
    4. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Zou, Zhice & Shen, Boyang & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu, 2022. "Energy-saving superconducting power delivery from renewable energy source to a 100-MW-class data center," Applied Energy, Elsevier, vol. 310(C).
    5. Wang, Jiangjiang & Deng, Hongda & Liu, Yi & Guo, Zeqing & Wang, Yongzhen, 2023. "Coordinated optimal scheduling of integrated energy system for data center based on computing load shifting," Energy, Elsevier, vol. 267(C).
    6. Guo, Caishan & Luo, Fengji & Cai, Zexiang & Dong, Zhao Yang, 2021. "Integrated energy systems of data centers and smart grids: State-of-the-art and future opportunities," Applied Energy, Elsevier, vol. 301(C).
    7. Xu, Da & Xiang, Shizhe & Bai, Ziyi & Wei, Juan & Gao, Menglu, 2023. "Optimal multi-energy portfolio towards zero carbon data center buildings in the presence of proactive demand response programs," Applied Energy, Elsevier, vol. 350(C).
    8. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    9. Shan, Kui & Wang, Shengwei & Zhuang, Chaoqun, 2021. "Controlling a large constant speed centrifugal chiller to provide grid frequency regulation: A validation based on onsite tests," Applied Energy, Elsevier, vol. 300(C).
    10. Anjie Lu & Jianguo Zhou & Minglei Qin & Danchen Liu, 2024. "Considering Carbon–Hydrogen Coupled Integrated Energy Systems: A Pathway to Sustainable Energy Transition in China Under Uncertainty," Sustainability, MDPI, vol. 16(21), pages 1-32, October.
    11. Han, Ouzhu & Ding, Tao & Zhang, Xiaosheng & Mu, Chenggang & He, Xinran & Zhang, Hongji & Jia, Wenhao & Ma, Zhoujun, 2023. "A shared energy storage business model for data center clusters considering renewable energy uncertainties," Renewable Energy, Elsevier, vol. 202(C), pages 1273-1290.
    12. Wang, Ji-Xiang & Qian, Jian & Wang, Ni & Zhang, He & Cao, Xiang & Liu, Feifan & Hao, Guanqiu, 2023. "A scalable micro-encapsulated phase change material and liquid metal integrated composite for sustainable data center cooling," Renewable Energy, Elsevier, vol. 213(C), pages 75-85.
    13. Han, Ouzhu & Ding, Tao & Yang, Miao & Jia, Wenhao & He, Xinran & Ma, Zhoujun, 2024. "A novel 4-level joint optimal dispatch for demand response of data centers with district autonomy realization," Applied Energy, Elsevier, vol. 358(C).
    14. Dong, Fuxiang & Wang, Jiangjiang & Xu, Hangwei & Zhang, Xutao, 2024. "A robust real-time energy scheduling strategy of integrated energy system based on multi-step interval prediction of uncertainties," Energy, Elsevier, vol. 300(C).
    15. Fu, Yangyang & Xu, Shichao & Zhu, Qi & O’Neill, Zheng & Adetola, Veronica, 2023. "How good are learning-based control v.s. model-based control for load shifting? Investigations on a single zone building energy system," Energy, Elsevier, vol. 273(C).
    16. Jerez Monsalves, Juan & Bergaentzlé, Claire & Keles, Dogan, 2023. "Impacts of flexible-cooling and waste-heat recovery from data centres on energy systems: A Danish case study," Energy, Elsevier, vol. 281(C).
    17. Laxmi Gupta & Ravi Shankar, 2022. "Adoption of Battery Management System in Utility Grid: An Empirical Study Using Structural Equation Modeling," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 23(4), pages 573-596, December.
    18. Hormozi, Elham & Hu, Shuwen & Ding, Zhe & Tian, Yu-Chu & Wang, You-Gan & Yu, Zu-Guo & Zhang, Weizhe, 2022. "Energy-efficient virtual machine placement in data centres via an accelerated Genetic Algorithm with improved fitness computation," Energy, Elsevier, vol. 252(C).
    19. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    20. Chong, Cheng Tung & Fan, Yee Van & Lee, Chew Tin & Klemeš, Jiří Jaromír, 2022. "Post COVID-19 ENERGY sustainability and carbon emissions neutrality," Energy, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pa:s0306261924013084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.