IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v321y2022ics0306261922006468.html
   My bibliography  Save this article

Data-driven assisted chance-constrained energy and reserve scheduling with wind curtailment

Author

Listed:
  • Lei, Xingyu
  • Yang, Zhifang
  • Zhao, Junbo
  • Yu, Juan

Abstract

Chance-constrained optimization (CCO) has been widely used for uncertainty management in power system operation. With the prevalence of wind energy, it becomes necessary to consider wind curtailment as a dispatch variable in CCO. However, the wind curtailment will cause an impulse for the uncertainty distribution, yielding challenges for explicit modeling of chance constraint. In this paper, a novel data-driven framework is developed to handle this issue. By modeling the wind curtailment as a cap enforced on the wind power output, the proposed framework constructs a data-driven surrogate to describe the relationship between wind curtailment and the tightening boundary of chance constraints. This allows us to reformulate the CCO with wind curtailment as a mixed-integer second-order cone programming (MI-SOCP) problem. An error correction strategy is developed by solving a convex linear programming (LP) to improve the modeling accuracy. The notable characteristic of the proposed method is that the chance constraints with wind curtailment can be explicitly and accurately handled without any distribution assumptions, which provides great convenience for the power dispatch under a high percentage of renewables. Case studies performed on the PJM 5-bus and IEEE 118-bus systems demonstrate that the proposed method is capable of accurately accounting the influence of wind curtailment dispatch in CCO. It shows that the proposed method outperforms existing methods by producing more economic and secure solutions for the chance-constrained energy and reserve scheduling problem under uncertainties.

Suggested Citation

  • Lei, Xingyu & Yang, Zhifang & Zhao, Junbo & Yu, Juan, 2022. "Data-driven assisted chance-constrained energy and reserve scheduling with wind curtailment," Applied Energy, Elsevier, vol. 321(C).
  • Handle: RePEc:eee:appene:v:321:y:2022:i:c:s0306261922006468
    DOI: 10.1016/j.apenergy.2022.119291
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922006468
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119291?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Quan & Li, Yanfei & Zhao, Dezong & Li, Ji & Williams, Huw & Xu, Hongming & Yan, Fuwu, 2022. "Transferable representation modelling for real-time energy management of the plug-in hybrid vehicle based on k-fold fuzzy learning and Gaussian process regression," Applied Energy, Elsevier, vol. 305(C).
    2. van der Meer, D.W. & Shepero, M. & Svensson, A. & Widén, J. & Munkhammar, J., 2018. "Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian Processes," Applied Energy, Elsevier, vol. 213(C), pages 195-207.
    3. Chen, Yue & Lin, Yashen, 2021. "Combining model-based and model-free methods for stochastic control of distributed energy resources," Applied Energy, Elsevier, vol. 283(C).
    4. Azizipanah-Abarghooee, Rasoul & Golestaneh, Faranak & Gooi, Hoay Beng & Lin, Jeremy & Bavafa, Farhad & Terzija, Vladimir, 2016. "Corrective economic dispatch and operational cycles for probabilistic unit commitment with demand response and high wind power," Applied Energy, Elsevier, vol. 182(C), pages 634-651.
    5. Shabazbegian, Vahid & Ameli, Hossein & Ameli, Mohammad Taghi & Strbac, Goran & Qadrdan, Meysam, 2021. "Co-optimization of resilient gas and electricity networks; a novel possibilistic chance-constrained programming approach," Applied Energy, Elsevier, vol. 284(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alyami, Saeed, 2024. "Fairness and usability analysis in renewable power curtailment: A microgrid network study using bankruptcy rules," Renewable Energy, Elsevier, vol. 227(C).
    2. Shi, Jiantao & Guo, Ye & Shen, Xinwei & Wu, Wenchuan & Sun, Hongbin, 2024. "Multi-interval rolling-window joint dispatch and pricing of energy and reserve under uncertainty," Applied Energy, Elsevier, vol. 356(C).
    3. Yan, Yixian & Huang, Chang & Guan, Junquan & Zhang, Qi & Cai, Yang & Wang, Weiliang, 2024. "Stochastic optimization of solar-based distributed energy system: An error-based scenario with a day-ahead and real-time dynamic scheduling approach," Applied Energy, Elsevier, vol. 363(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Feifei & Zhao, Liang & Wang, Meihong & Du, Wenli & Qian, Feng, 2022. "Data-driven adaptive robust optimization for energy systems in ethylene plant under demand uncertainty," Applied Energy, Elsevier, vol. 307(C).
    2. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    3. Wang, Weida & Chen, Yincong & Yang, Chao & Li, Ying & Xu, Bin & Xiang, Changle, 2022. "An enhanced hypotrochoid spiral optimization algorithm based intertwined optimal sizing and control strategy of a hybrid electric air-ground vehicle," Energy, Elsevier, vol. 257(C).
    4. Morshed, Mohammad Javad & Hmida, Jalel Ben & Fekih, Afef, 2018. "A probabilistic multi-objective approach for power flow optimization in hybrid wind-PV-PEV systems," Applied Energy, Elsevier, vol. 211(C), pages 1136-1149.
    5. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    6. Tamara Schröter & André Richter & Jens Götze & André Naumann & Jenny Gronau & Martin Wolter, 2020. "Substation Related Forecasts of Electrical Energy Storage Systems: Transmission System Operator Requirements," Energies, MDPI, vol. 13(23), pages 1-26, November.
    7. Zhou, Yi & Zhou, Nanrun & Gong, Lihua & Jiang, Minlin, 2020. "Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine," Energy, Elsevier, vol. 204(C).
    8. Fjelkestam Frederiksen, Cornelia A. & Cai, Zuansi, 2022. "Novel machine learning approach for solar photovoltaic energy output forecast using extra-terrestrial solar irradiance," Applied Energy, Elsevier, vol. 306(PB).
    9. Jiang, Yibo & Xu, Jian & Sun, Yuanzhang & Wei, Congying & Wang, Jing & Ke, Deping & Li, Xiong & Yang, Jun & Peng, Xiaotao & Tang, Bowen, 2017. "Day-ahead stochastic economic dispatch of wind integrated power system considering demand response of residential hybrid energy system," Applied Energy, Elsevier, vol. 190(C), pages 1126-1137.
    10. Zhineng Hu & Jing Ma & Liangwei Yang & Liming Yao & Meng Pang, 2019. "Monthly electricity demand forecasting using empirical mode decomposition-based state space model," Energy & Environment, , vol. 30(7), pages 1236-1254, November.
    11. Zhang, Juntao & Cheng, Chuntian & Yu, Shen & Su, Huaying, 2022. "Chance-constrained co-optimization for day-ahead generation and reserve scheduling of cascade hydropower–variable renewable energy hybrid systems," Applied Energy, Elsevier, vol. 324(C).
    12. Liu, Luyao & Zhao, Yi & Chang, Dongliang & Xie, Jiyang & Ma, Zhanyu & Sun, Qie & Yin, Hongyi & Wennersten, Ronald, 2018. "Prediction of short-term PV power output and uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 700-711.
    13. Wu, Thomas & Hu, Ruifeng & Zhu, Hongyu & Jiang, Meihui & Lv, Kunye & Dong, Yunxuan & Zhang, Dongdong, 2024. "Combined IXGBoost-KELM short-term photovoltaic power prediction model based on multidimensional similar day clustering and dual decomposition," Energy, Elsevier, vol. 288(C).
    14. Ji, Ling & Zhang, Bei-Bei & Huang, Guo-He & Xie, Yu-Lei & Niu, Dong-Xiao, 2018. "Explicit cost-risk tradeoff for optimal energy management in CCHP microgrid system under fuzzy-risk preferences," Energy Economics, Elsevier, vol. 70(C), pages 525-535.
    15. Zhang, Heng & Hu, Xiao & Cheng, Haozhong & Zhang, Shenxi & Hong, Shaoyun & Gu, Qingfa, 2021. "Coordinated scheduling of generators and tie lines in multi-area power systems under wind energy uncertainty," Energy, Elsevier, vol. 222(C).
    16. Spyros Giannelos & Stefan Borozan & Marko Aunedi & Xi Zhang & Hossein Ameli & Danny Pudjianto & Ioannis Konstantelos & Goran Strbac, 2023. "Modelling Smart Grid Technologies in Optimisation Problems for Electricity Grids," Energies, MDPI, vol. 16(13), pages 1-15, June.
    17. Nikolaos Kolokas & Dimosthenis Ioannidis & Dimitrios Tzovaras, 2021. "Multi-Step Energy Demand and Generation Forecasting with Confidence Used for Specification-Free Aggregate Demand Optimization," Energies, MDPI, vol. 14(11), pages 1-36, May.
    18. Xu, Lei & Wang, Shengwei & Tang, Rui, 2019. "Probabilistic load forecasting for buildings considering weather forecasting uncertainty and uncertain peak load," Applied Energy, Elsevier, vol. 237(C), pages 180-195.
    19. Harun Or Rashid Howlader & Oludamilare Bode Adewuyi & Ying-Yi Hong & Paras Mandal & Ashraf Mohamed Hemeida & Tomonobu Senjyu, 2019. "Energy Storage System Analysis Review for Optimal Unit Commitment," Energies, MDPI, vol. 13(1), pages 1-21, December.
    20. Chen, Ruihu & Yang, Chao & Ma, Yue & Wang, Weida & Wang, Muyao & Du, Xuelong, 2022. "Online learning predictive power coordinated control strategy for off-road hybrid electric vehicles considering the dynamic response of engine generator set," Applied Energy, Elsevier, vol. 323(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:321:y:2022:i:c:s0306261922006468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.