IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124004890.html
   My bibliography  Save this article

Fairness and usability analysis in renewable power curtailment: A microgrid network study using bankruptcy rules

Author

Listed:
  • Alyami, Saeed

Abstract

The integration of renewable energy sources globally has effectively reduced carbon emissions and enhanced community self-sufficiency through local resource use. However, challenges arise with higher renewables penetration, especially at local and distribution levels. Curtailment of renewables becomes necessary during peak generation intervals to ensure power quality and system stability, raising fairness concerns. This study examines the feasibility of using bankruptcy rules to address fairness concerns in renewable power curtailment in microgrid networks. Four bankruptcy rules - proportional, constrained equal awards (CEA), constrained equal losses (CEL), and sequential priority rules - are evaluated using the IEEE 33-bus system transformed into a network of five microgrids with solar and wind generators. Voltage profiles of microgrid networks in Detroit and Chicago under high renewable penetration are assessed, and bankruptcy rules are applied to curtail surplus renewable power. The fairness of each rule is analyzed using Jain's fairness index, while a usability index evaluates power usability across microgrids under different bankruptcy rules. Simulation results show that the proportional and CEA rules exhibit better fairness and equal usability among microgrids, with voltage profiles just below the upper bound. Conversely, the priority rule improves voltage profiles at the expense of fairness and equal usability.

Suggested Citation

  • Alyami, Saeed, 2024. "Fairness and usability analysis in renewable power curtailment: A microgrid network study using bankruptcy rules," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124004890
    DOI: 10.1016/j.renene.2024.120424
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124004890
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120424?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stringer, Naomi & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2021. "Fair consumer outcomes in the balance: Data driven analysis of distributed PV curtailment," Renewable Energy, Elsevier, vol. 173(C), pages 972-986.
    2. Lei, Xingyu & Yang, Zhifang & Zhao, Junbo & Yu, Juan, 2022. "Data-driven assisted chance-constrained energy and reserve scheduling with wind curtailment," Applied Energy, Elsevier, vol. 321(C).
    3. Liu, Shiyu & Bie, Zhaohong & Lin, Jiang & Wang, Xifan, 2018. "Curtailment of renewable energy in Northwest China and market-based solutions," Energy Policy, Elsevier, vol. 123(C), pages 494-502.
    4. Andoni, Merlinda & Robu, Valentin & Früh, Wolf-Gerrit & Flynn, David, 2017. "Game-theoretic modeling of curtailment rules and network investments with distributed generation," Applied Energy, Elsevier, vol. 201(C), pages 174-187.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Libo Zhang & Qian Du & Dequn Zhou, 2021. "Grid Parity Analysis of China’s Centralized Photovoltaic Generation under Multiple Uncertainties," Energies, MDPI, vol. 14(7), pages 1-19, March.
    2. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    3. Cui, Qi & He, Ling & Han, Guoyi & Chen, Hao & Cao, Juanjuan, 2020. "Review on climate and water resource implications of reducing renewable power curtailment in China: A nexus perspective," Applied Energy, Elsevier, vol. 267(C).
    4. Fuquan Zhao & Fanlong Bai & Xinglong Liu & Zongwei Liu, 2022. "A Review on Renewable Energy Transition under China’s Carbon Neutrality Target," Sustainability, MDPI, vol. 14(22), pages 1-27, November.
    5. Chen, Hao & Chen, Jiachuan & Han, Guoyi & Cui, Qi, 2022. "Winding down the wind power curtailment in China: What made the difference?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Kejia Yang & Johan Schot & Bernhard Truffer, 2020. "Shaping the Directionality of Sustainability Transitions: The Diverging Development Patterns of Solar PV in Two Chinese Provinces," SPRU Working Paper Series 2020-14, SPRU - Science Policy Research Unit, University of Sussex Business School.
    7. Hu, Junfeng & Yan, Qingyou & Kahrl, Fredrich & Liu, Xu & Wang, Peng & Lin, Jiang, 2021. "Evaluating the ancillary services market for large-scale renewable energy integration in China's northeastern power grid," Utilities Policy, Elsevier, vol. 69(C).
    8. Lu, Qing & Lü, Shuaikang & Leng, Yajun, 2019. "A Nash-Stackelberg game approach in regional energy market considering users’ integrated demand response," Energy, Elsevier, vol. 175(C), pages 456-470.
    9. Li, Tao & Li, Ang & Guo, Xiaopeng, 2020. "The sustainable development-oriented development and utilization of renewable energy industry——A comprehensive analysis of MCDM methods," Energy, Elsevier, vol. 212(C).
    10. Kumar, T. Bharath & Singh, Anoop, 2021. "Ancillary services in the Indian power sector – A look at recent developments and prospects," Energy Policy, Elsevier, vol. 149(C).
    11. Xia, Hui & Dai, Ling & Sun, Liping & Chen, Xi & Li, Yuening & Zheng, Yihan & Peng, Yanlai & Wu, Kaiya, 2023. "Analysis of the spatiotemporal distribution pattern and driving factors of renewable energy power generation in China," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 414-428.
    12. Yan, Zhe & Zhang, Yongming & Liang, Runqi & Jin, Wenrui, 2020. "An allocative method of hybrid electrical and thermal energy storage capacity for load shifting based on seasonal difference in district energy planning," Energy, Elsevier, vol. 207(C).
    13. Lingyan Xu & Fenglian Huang & Jianguo Du & Dandan Wang, 2020. "Decisions in Power Supply Chain with Emission Reduction Effort of Coal-Fired Power Plant under the Power Market Reform," Sustainability, MDPI, vol. 12(16), pages 1-30, August.
    14. Konstantakopoulos, Ioannis C. & Barkan, Andrew R. & He, Shiying & Veeravalli, Tanya & Liu, Huihan & Spanos, Costas, 2019. "A deep learning and gamification approach to improving human-building interaction and energy efficiency in smart infrastructure," Applied Energy, Elsevier, vol. 237(C), pages 810-821.
    15. Zhang, Kai & Wang, Dajiang & Chen, Min & Zhu, Rui & Zhang, Fan & Zhong, Teng & Qian, Zhen & Wang, Yazhou & Li, Hengyue & Wang, Yijie & Lü, Guonian & Yan, Jinyue, 2024. "Power generation assessment of photovoltaic noise barriers across 52 major Chinese cities," Applied Energy, Elsevier, vol. 361(C).
    16. Qiao, Qiao & Zeng, Xianhai & Lin, Boqiang, 2024. "Mitigating wind curtailment risk in China: The impact of subsidy reduction policy," Applied Energy, Elsevier, vol. 368(C).
    17. Abhnil Amtesh Prasad & Merlinde Kay, 2021. "Prediction of Solar Power Using Near-Real Time Satellite Data," Energies, MDPI, vol. 14(18), pages 1-20, September.
    18. Wiesheu, Michael & Rutešić, Luka & Shukhobodskiy, Alexander Alexandrovich & Pogarskaia, Tatiana & Zaitcev, Aleksandr & Colantuono, Giuseppe, 2021. "RED WoLF hybrid storage system: Adaptation of algorithm and analysis of performance in residential dwellings," Renewable Energy, Elsevier, vol. 179(C), pages 1036-1048.
    19. Wang, Kai-Hua & Su, Chi-Wei & Lobonţ, Oana-Ramona & Moldovan, Nicoleta-Claudia, 2020. "Chinese renewable energy industries’ boom and recession: Evidence from bubble detection procedure," Energy Policy, Elsevier, vol. 138(C).
    20. Ri Piao & Deok-Joo Lee & Taegu Kim, 2020. "Real-Time Pricing Scheme in Smart Grid Considering Time Preference: Game Theoretic Approach," Energies, MDPI, vol. 13(22), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124004890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.