IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v535y2019ics037843711931427x.html
   My bibliography  Save this article

Sequential topology recovery of complex power systems based on reinforcement learning

Author

Listed:
  • Wu, Jiajing
  • Fang, Biaoyan
  • Fang, Junyuan
  • Chen, Xi
  • Tse, Chi K.

Abstract

Cascading failure is among the most critical threats to the security and resilience of modern power systems and has attracted a wealth of research interest in the past decade. Most of the existing studies have investigated the issue of cascading failure on complex power systems mainly from the attacker’s perspective. From the perspective of a system defender or operator, fast restoration of the power system to normal operation is also important. In this paper, we consider cascading failure in conjunction with the restoration process involving repairing of the failed nodes in a sequential fashion. Based on a realistic power flow model depicting cascading failures, we apply reinforcement learning to develop a practical and effective strategy to identify an optimal sequential restoration process for large-scale power systems. Simulation results on three benchmark power systems demonstrate the learning ability and the effectiveness of the proposed strategy.

Suggested Citation

  • Wu, Jiajing & Fang, Biaoyan & Fang, Junyuan & Chen, Xi & Tse, Chi K., 2019. "Sequential topology recovery of complex power systems based on reinforcement learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
  • Handle: RePEc:eee:phsmap:v:535:y:2019:i:c:s037843711931427x
    DOI: 10.1016/j.physa.2019.122487
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711931427X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122487?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Zhong-Yuan & Zeng, Yong & Liu, Zhi-Hong & Ma, Jian-Feng, 2019. "Identifying critical nodes’ group in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 121-132.
    2. Tu, Haicheng & Xia, Yongxiang & Wu, Jiajing & Zhou, Xiang, 2019. "Robustness assessment of cyber–physical systems with weak interdependency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 9-17.
    3. Cadini, F. & Zio, E. & Petrescu, C.A., 2010. "Optimal expansion of an existing electrical power transmission network by multi-objective genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 173-181.
    4. Zio, E. & Golea, L.R. & Sansavini, G., 2012. "Optimizing protections against cascades in network systems: A modified binary differential evolution algorithm," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 72-83.
    5. Wu, Jiajing & Zeng, Junwen & Chen, Zhenhao & Tse, Chi K. & Chen, Bokui, 2018. "Effects of traffic generation patterns on the robustness of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 871-877.
    6. Jiang, Zhong-Yuan & Liu, Zhi-Quan & He, Xuan & Ma, Jian-Feng, 2018. "Cascade phenomenon against subsequent failures in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 472-480.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Zhongtuo & Yao, Wei & Li, Zhouping & Zeng, Lingkang & Zhao, Yifan & Zhang, Runfeng & Tang, Yong & Wen, Jinyu, 2020. "Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions," Applied Energy, Elsevier, vol. 278(C).
    2. Hassani, Hossein & Razavi-Far, Roozbeh & Saif, Mehrdad, 2022. "Real-time out-of-step prediction control to prevent emerging blackouts in power systems: A reinforcement learning approach," Applied Energy, Elsevier, vol. 314(C).
    3. Huang, Wei & Zhang, Tianyi & Yao, Xinwei, 2022. "Optimization for sequential communication line attack in interdependent power-communication network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    4. Abdollah Younesi & Hossein Shayeghi & Pierluigi Siano, 2020. "Assessing the Use of Reinforcement Learning for Integrated Voltage/Frequency Control in AC Microgrids," Energies, MDPI, vol. 13(5), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Compare, Michele & Bellani, Luca & Zio, Enrico, 2019. "Optimal allocation of prognostics and health management capabilities to improve the reliability of a power transmission network," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 164-180.
    2. Jiang, Zhong-Yuan & Zeng, Yong & Liu, Zhi-Hong & Ma, Jian-Feng, 2019. "Identifying critical nodes’ group in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 121-132.
    3. Linn Svegrup & Jonas Johansson & Henrik Hassel, 2019. "Integration of Critical Infrastructure and Societal Consequence Models: Impact on Swedish Power System Mitigation Decisions," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1970-1996, September.
    4. Xu, Sheng & Xia, Yongxiang & Ouyang, Min, 2020. "Effect of resource allocation to the recovery of scale-free networks during cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    5. Wu, Taocheng & Wu, Jiajing & You, Wei, 2018. "Optimizing robustness of complex networks with heterogeneous node functions based on the Memetic Algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 143-153.
    6. Wu, Jiajing & You, Wei & Wu, Taocheng & Xia, Yongxiang, 2018. "Abnormal phenomenon in robustness of complex networks with heterogeneous node functions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 451-461.
    7. Zohre Alipour & Mohammad Ali Saniee Monfared & Enrico Zio, 2014. "Comparing topological and reliability-based vulnerability analysis of Iran power transmission network," Journal of Risk and Reliability, , vol. 228(2), pages 139-151, April.
    8. Yiping Fang & Nicola Pedroni & Enrico Zio, 2015. "Optimization of Cascade‐Resilient Electrical Infrastructures and its Validation by Power Flow Modeling," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 594-607, April.
    9. Li, Xin & Lei, Anzhi & Zhu, Liangkuan & Ban, Mingfei, 2024. "Improving Kalman filter for cyber physical systems subject to replay attacks: An attack-detection-based compensation strategy," Applied Mathematics and Computation, Elsevier, vol. 466(C).
    10. Kishore, T.S. & Singal, S.K., 2014. "Optimal economic planning of power transmission lines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 949-974.
    11. Lin, Yi-Kuei & Yeh, Cheng-Ta, 2011. "Maximal network reliability for a stochastic power transmission network," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1332-1339.
    12. Zhang, Xi & Liu, Dong & Tu, Haicheng & Tse, Chi Kong, 2022. "An integrated modeling framework for cascading failure study and robustness assessment of cyber-coupled power grids," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    13. Zhang, Le & Du, Ye, 2023. "Cascading failure model and resilience enhancement scheme of space information networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    14. Gao, Xingle & Peng, Minfang & Tse, Chi K., 2022. "Robustness analysis of cyber-coupled power systems with considerations of interdependence of structures, operations and dynamic behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    15. Ma, Lijia & Zhang, Xiao & Mao, Fubing & Cai, Shubin & Lin, Qiuzhen & Chen, Jianyong & Wang, Shanfeng, 2020. "Mitigation of malicious attacks on structural balance of signed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    16. Zhao, Jiangbin & Si, Shubin & Cai, Zhiqiang, 2019. "A multi-objective reliability optimization for reconfigurable systems considering components degradation," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 104-115.
    17. Wang, Jingbei & Yang, Naiding & Zhang, Yanlu & Song, Yue, 2018. "Development of the mitigation strategy against the schedule risks of the R&D project through controlling the cascading failure of the R&D network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 390-401.
    18. Marie-Louise Kloubert, 2020. "Probabilistic Load Flow Approach Considering Dependencies of Wind Speed, Solar Irradiance, Electrical Load and Energy Exchange with a Joint Probability Distribution Model," Energies, MDPI, vol. 13(7), pages 1-15, April.
    19. Gao, Yanli & Chen, Shiming & Zhou, Jie & Zhang, Jingjing & Stanley, H.E., 2020. "Multiple phase transition in the non-symmetrical interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
    20. Ouyang, Min & Pan, ZheZhe & Hong, Liu & He, Yue, 2015. "Vulnerability analysis of complementary transportation systems with applications to railway and airline systems in China," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 248-257.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:535:y:2019:i:c:s037843711931427x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.