IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v311y2022ics0306261922000940.html
   My bibliography  Save this article

Weekly hydropower scheduling of cascaded reservoirs with hourly power and capacity balances

Author

Listed:
  • Feng, Suzhen
  • Zheng, Hao
  • Qiao, Yifan
  • Yang, Zetai
  • Wang, Jinwen
  • Liu, Shuangquan

Abstract

A medium/long-term hydropower scheduling routinely assumes the energy produced in each week will be fully utilized in peak-shaving the power demands during every day in that week, ignoring the fluctuation of the hourly power loads. This work improves the traditional weekly hydropower scheduling by integrating the hourly power and capacity balances (HPCB), which has rarely been investigated, mainly due to great challenges imposed in solving the model. The HPCB are formulated into mixed integer linear constraints, involving the spare, maintenance, disabled, reserve and working capacities, as well as the order and levels of hydroplants in peak-shaving the hourly power load curve, all to be optimized. The formulation is then improved with successive strategies in updating water heads and peak-shaving hours, aiming to boost the solution efficiency by excluding more binary variables. The case studies involving 6 cascaded hydropower reservoirs in Lancang River reveal that the traditional weekly hydropower scheduling overestimates the benefits significantly, strongly suggesting the necessity to include the HPBC into a long/mid-term hydropower scheduling. The experiments also recommend an improved model formulation that achieves very consistent results on the top three prioritized objectives, while taking less than 0.1 s to solve the problem involving all six cascaded reservoirs, demonstrating a great prospect in solving problems in large scale.

Suggested Citation

  • Feng, Suzhen & Zheng, Hao & Qiao, Yifan & Yang, Zetai & Wang, Jinwen & Liu, Shuangquan, 2022. "Weekly hydropower scheduling of cascaded reservoirs with hourly power and capacity balances," Applied Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:appene:v:311:y:2022:i:c:s0306261922000940
    DOI: 10.1016/j.apenergy.2022.118620
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922000940
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118620?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yves Mbeutcha & Michel Gendreau & Gregory Emiel, 2021. "A hybrid dynamic programming - Tabu Search approach for the long-term hydropower scheduling problem," Computational Management Science, Springer, vol. 18(3), pages 385-410, July.
    2. He, Zhongzheng & Wang, Chao & Wang, Yongqiang & Wei, Bowen & Zhou, Jianzhong & Zhang, Hairong & Qin, Hui, 2021. "Dynamic programming with successive approximation and relaxation strategy for long-term joint power generation scheduling of large-scale hydropower station group," Energy, Elsevier, vol. 222(C).
    3. Xianliang Cheng & Suzhen Feng & Yanxuan Huang & Jinwen Wang, 2021. "A New Peak-Shaving Model Based on Mixed Integer Linear Programming with Variable Peak-Shaving Order," Energies, MDPI, vol. 14(4), pages 1-15, February.
    4. R. Arunkumar & V. Jothiprakash, 2013. "Chaotic Evolutionary Algorithms for Multi-Reservoir Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5207-5222, December.
    5. Sheng-li Liao & Ben-xi Liu & Chun-tian Cheng & Zhi-fu Li & Xin-yu Wu, 2017. "Long-Term Generation Scheduling of Hydropower System Using Multi-Core Parallelization of Particle Swarm Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(9), pages 2791-2807, July.
    6. Chuanxiong Kang & Cheng Chen & Jinwen Wang, 2018. "An Efficient Linearization Method for Long-Term Operation of Cascaded Hydropower Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(10), pages 3391-3404, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Deji Baima & Guoyuan Qian & Jingzhen Luo & Pengcheng Wang & Hao Zheng & Jinwen Wang, 2024. "Monthly Hydropower Scheduling of Cascaded Reservoirs Using a Genetic Algorithm with a Simulation Procedure," Energies, MDPI, vol. 17(15), pages 1-17, July.
    2. Xiong, Xin & Hu, Xi & Tian, Tian & Guo, Huan & Liao, Han, 2022. "A novel Optimized initial condition and Seasonal division based Grey Seasonal Variation Index model for hydropower generation," Applied Energy, Elsevier, vol. 328(C).
    3. Chao Wang & Zhiqiang Jiang & Pengfei Wang & Yichao Xu, 2024. "A Fast Local Search Strategy Based on the Principle of Optimality for the Long-Term Scheduling of Large Cascade Hydropower Stations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 137-152, January.
    4. Li, Zekai & Hu, Xi & Guo, Huan & Xiong, Xin, 2023. "A novel Weighted Average Weakening Buffer Operator based Fractional order accumulation Seasonal Grouping Grey Model for predicting the hydropower generation," Energy, Elsevier, vol. 277(C).
    5. Shuo Huang & Xinyu Wu & Yiyang Wu & Zheng Zhang, 2023. "Mid-Term Optimal Scheduling of Low-Head Cascaded Hydropower Stations Considering Inflow Unevenness," Energies, MDPI, vol. 16(17), pages 1-13, September.
    6. Rongqi Zhang & Shanghong Zhang & Xiaoxiong Wen & Zhu Jing, 2023. "Refined Scheduling Based on Dynamic Capacity Model for Short-term Hydropower Generation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 21-35, January.
    7. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Developing operating rules for a hydro–wind–solar hybrid system considering peak-shaving demands," Applied Energy, Elsevier, vol. 360(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shengli Liao & Jie Liu & Benxi Liu & Chuntian Cheng & Lingan Zhou & Huijun Wu, 2020. "Multicore Parallel Dynamic Programming Algorithm for Short-Term Hydro-Unit Load Dispatching of Huge Hydropower Stations Serving Multiple Power Grids," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 359-376, January.
    2. Wang, Peilin & Yuan, Wenlin & Su, Chengguo & Wu, Yang & Lu, Lu & Yan, Denghua & Wu, Zening, 2022. "Short-term optimal scheduling of cascade hydropower plants shaving peak load for multiple power grids," Renewable Energy, Elsevier, vol. 184(C), pages 68-79.
    3. Liao, Shengli & Liu, Zhanwei & Liu, Benxi & Cheng, Chuntian & Wu, Xinyu & Zhao, Zhipeng, 2021. "Daily peak shaving operation of cascade hydropower stations with sensitive hydraulic connections considering water delay time," Renewable Energy, Elsevier, vol. 169(C), pages 970-981.
    4. Benyou Jia & Slobodan P. Simonovic & Pingan Zhong & Zhongbo Yu, 2016. "A Multi-Objective Best Compromise Decision Model for Real-Time Flood Mitigation Operations of Multi-Reservoir System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(10), pages 3363-3387, August.
    5. Mohammad Zounemat-Kermani, 2016. "Investigating Chaos and Nonlinear Forecasting in Short Term and Mid-term River Discharge," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(5), pages 1851-1865, March.
    6. Hu Hu & Kan Yang & Lyuwen Su & Zhe Yang, 2019. "A Novel Adaptive Multi-Objective Particle Swarm Optimization Based on Decomposition and Dominance for Long-term Generation Scheduling of Cascade Hydropower System," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 4007-4026, September.
    7. Qiao-feng Tan & Guo-hua Fang & Xin Wen & Xiao-hui Lei & Xu Wang & Chao Wang & Yi Ji, 2020. "Bayesian Stochastic Dynamic Programming for Hydropower Generation Operation Based on Copula Functions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(5), pages 1589-1607, March.
    8. Shuo Huang & Xinyu Wu & Yiyang Wu & Zheng Zhang, 2023. "Mid-Term Optimal Scheduling of Low-Head Cascaded Hydropower Stations Considering Inflow Unevenness," Energies, MDPI, vol. 16(17), pages 1-13, September.
    9. Zhao, Zhigao & Yang, Jiandong & Chung, C.Y. & Yang, Weijia & He, Xianghui & Chen, Man, 2021. "Performance enhancement of pumped storage units for system frequency support based on a novel small signal model," Energy, Elsevier, vol. 234(C).
    10. Zhongzheng He & Chao Wang & Yongqiang Wang & Hairong Zhang & Heng Yin, 2022. "An Efficient Optimization Method for Long-term Power Generation Scheduling of Hydropower Station: Improved Dynamic Programming with a Relaxation Strategy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1481-1497, March.
    11. Yin, Linfei & Luo, Shikui & Ma, Chenxiao, 2021. "Expandable depth and width adaptive dynamic programming for economic smart generation control of smart grids," Energy, Elsevier, vol. 232(C).
    12. Fang-Fang Li & Jun Qiu, 2015. "Multi-Objective Reservoir Optimization Balancing Energy Generation and Firm Power," Energies, MDPI, vol. 8(7), pages 1-15, July.
    13. Jia Chen, 2021. "Long-Term Joint Operation of Cascade Reservoirs Using Enhanced Progressive Optimality Algorithm and Dynamic Programming Hybrid Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2265-2279, May.
    14. Xinyu Wu & Shuai Yin & Chuntian Cheng & Zhiyong Chen & Huaying Su, 2023. "SSDP Model with Inflow Clustering for Hydropower System Operation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1109-1123, February.
    15. Yang, Zhe & Wang, Yufeng & Yang, Kan, 2022. "The stochastic short-term hydropower generation scheduling considering uncertainty in load output forecasts," Energy, Elsevier, vol. 241(C).
    16. Xinyu Wu & Ruixiang Cheng & Chuntian Cheng, 2022. "A Simplified Solution Method for End-of-Term Storage Energy Maximization Model of Cascaded Reservoirs," Energies, MDPI, vol. 15(12), pages 1-18, June.
    17. Ali Thaeer Hammid & Omar I. Awad & Mohd Herwan Sulaiman & Saraswathy Shamini Gunasekaran & Salama A. Mostafa & Nallapaneni Manoj Kumar & Bashar Ahmad Khalaf & Yasir Amer Al-Jawhar & Raed Abdulkareem A, 2020. "A Review of Optimization Algorithms in Solving Hydro Generation Scheduling Problems," Energies, MDPI, vol. 13(11), pages 1-21, June.
    18. Fang, Zhou & Liao, Shengli & Cheng, Chuntian & Zhao, Hongye & Liu, Benxi & Su, Huaying, 2023. "Parallel improved DPSA algorithm for medium-term optimal scheduling of large-scale cascade hydropower plants," Renewable Energy, Elsevier, vol. 210(C), pages 134-147.
    19. Taimoor Ahmad Khan & Amjad Ullah & Ghulam Hafeez & Imran Khan & Sadia Murawwat & Faheem Ali & Sajjad Ali & Sheraz Khan & Khalid Rehman, 2022. "A Fractional Order Super Twisting Sliding Mode Controller for Energy Management in Smart Microgrid Using Dynamic Pricing Approach," Energies, MDPI, vol. 15(23), pages 1-14, November.
    20. Cheng, Xianliang & Feng, Suzhen & Zheng, Hao & Wang, Jinwen & Liu, Shuangquan, 2022. "A hierarchical model in short-term hydro scheduling with unit commitment and head-dependency," Energy, Elsevier, vol. 251(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:311:y:2022:i:c:s0306261922000940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.