IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v38y2024i1d10.1007_s11269-023-03658-y.html
   My bibliography  Save this article

A Fast Local Search Strategy Based on the Principle of Optimality for the Long-Term Scheduling of Large Cascade Hydropower Stations

Author

Listed:
  • Chao Wang

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research)

  • Zhiqiang Jiang

    (Huazhong University of Science and Technology)

  • Pengfei Wang

    (Huazhong University of Science and Technology)

  • Yichao Xu

    (Huazhong University of Science and Technology)

Abstract

The objective of jointly optimizing the dispatching of cascade hydropower stations in the basin is to maximize economic benefits while ensuring the safe and stable operation constraints of power grids and hydropower stations. The existing joint optimization scheduling algorithms include dynamic programming algorithms and intelligent optimization algorithms. Among them, the progressive optimization algorithm (POA) as a representative of dynamic programming methods can effectively solve complex nonlinear constraint optimization problems. However, while it effectively addresses the issue of “dimensional disaster” in traditional dynamic programming, it also faces the challenge of “local convergence”. Although the intelligent optimization algorithm such as the differential evolutionary algorithm (DE) and the genetic algorithm (GA) can effectively handle large-scale complex constraint optimization problems, these algorithms rely on their own group evolution mechanism and lack a search strategy tailored to the mathematical mechanism of the joint scheduling model of cascade hydropower stations. Starting with the theoretical analysis of the two-stage problem of optimizing and dispatching cascade hydropower stations, this paper deduces the monotonicity principle of the two-stage optimization problem for power generation dispatch and proposes a local search strategy based on the monotonicity principle. By using the cascade reservoir group in the lower reaches of JinSha River as an example, the local search strategy for the two-stage optimization problem of power generation dispatch in cascade hydropower stations is validated. This strategy improves the convergence rate and solution accuracy of the algorithm, thereby achieving an efficient solution to the joint optimization dispatch problem of cascade hydropower stations.

Suggested Citation

  • Chao Wang & Zhiqiang Jiang & Pengfei Wang & Yichao Xu, 2024. "A Fast Local Search Strategy Based on the Principle of Optimality for the Long-Term Scheduling of Large Cascade Hydropower Stations," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 137-152, January.
  • Handle: RePEc:spr:waterr:v:38:y:2024:i:1:d:10.1007_s11269-023-03658-y
    DOI: 10.1007/s11269-023-03658-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-023-03658-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-023-03658-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chun-Tian Cheng & Wen-Chuan Wang & Dong-Mei Xu & K. Chau, 2008. "Optimizing Hydropower Reservoir Operation Using Hybrid Genetic Algorithm and Chaos," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(7), pages 895-909, July.
    2. Feng, Suzhen & Zheng, Hao & Qiao, Yifan & Yang, Zetai & Wang, Jinwen & Liu, Shuangquan, 2022. "Weekly hydropower scheduling of cascaded reservoirs with hourly power and capacity balances," Applied Energy, Elsevier, vol. 311(C).
    3. Yichao Xu & Zhiqiang Jiang & Yi Liu & Li Zhang & Jiahao Yang & Hairun Shu, 2023. "An Adaptive Ensemble Framework for Flood Forecasting and Its Application in a Small Watershed Using Distinct Rainfall Interpolation Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2195-2219, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco van Dijk & Stefanus Johannes van Vuuren & Giovanna Cavazzini & Chantel Monica Niebuhr & Alberto Santolin, 2022. "Optimizing Conduit Hydropower Potential by Determining Pareto-Optimal Trade-Off Curve," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    2. Ahmadi, Mohamadreza & Mojallali, Hamed, 2012. "Chaotic invasive weed optimization algorithm with application to parameter estimation of chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 45(9), pages 1108-1120.
    3. Rongqi Zhang & Shanghong Zhang & Xiaoxiong Wen & Zhu Jing, 2023. "Refined Scheduling Based on Dynamic Capacity Model for Short-term Hydropower Generation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(1), pages 21-35, January.
    4. Wang, Jin & Zhao, Zhipeng & Zhou, Jinglin & Cheng, Chuntian & Su, Huaying, 2024. "Developing operating rules for a hydro–wind–solar hybrid system considering peak-shaving demands," Applied Energy, Elsevier, vol. 360(C).
    5. Tao Bai & Lianzhou Wu & Jian-xia Chang & Qiang Huang, 2015. "Multi-Objective Optimal Operation Model of Cascade Reservoirs and Its Application on Water and Sediment Regulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2751-2770, June.
    6. Ludovic Gaudard & Jeannette Gabbi & Andreas Bauder & Franco Romerio, 2016. "Long-term Uncertainty of Hydropower Revenue Due to Climate Change and Electricity Prices," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(4), pages 1325-1343, March.
    7. Tsai, Wen-Ping & Cheng, Chung-Lien & Uen, Tinn-Shuan & Zhou, Yanlai & Chang, Fi-John, 2019. "Drought mitigation under urbanization through an intelligent water allocation system," Agricultural Water Management, Elsevier, vol. 213(C), pages 87-96.
    8. Lisicki, Michal & Lubitz, William & Taylor, Graham W., 2016. "Optimal design and operation of Archimedes screw turbines using Bayesian optimization," Applied Energy, Elsevier, vol. 183(C), pages 1404-1417.
    9. Jure Margeta & Zvonimir Glasnovic, 2011. "Hybrid RES-HEP Systems Development," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(9), pages 2219-2239, July.
    10. Wenhua Wan & Jianshi Zhao & Jiabiao Wang, 2019. "Revisiting Water Supply Rule Curves with Hedging Theory for Climate Change Adaptation," Sustainability, MDPI, vol. 11(7), pages 1-21, March.
    11. Onur Hınçal & A. Altan-Sakarya & A. Metin Ger, 2011. "Optimization of Multireservoir Systems by Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(5), pages 1465-1487, March.
    12. V. Jothiprakash & R. Arunkumar, 2013. "Optimization of Hydropower Reservoir Using Evolutionary Algorithms Coupled with Chaos," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 1963-1979, May.
    13. Shuo Huang & Xinyu Wu & Yiyang Wu & Zheng Zhang, 2023. "Mid-Term Optimal Scheduling of Low-Head Cascaded Hydropower Stations Considering Inflow Unevenness," Energies, MDPI, vol. 16(17), pages 1-13, September.
    14. Mahdi Sedighkia & Asghar Abdoli, 2023. "Design of optimal environmental flow regime at downstream of multireservoir systems by a coupled SWAT-reservoir operation optimization method," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 834-854, January.
    15. Deji Baima & Guoyuan Qian & Jingzhen Luo & Pengcheng Wang & Hao Zheng & Jinwen Wang, 2024. "Monthly Hydropower Scheduling of Cascaded Reservoirs Using a Genetic Algorithm with a Simulation Procedure," Energies, MDPI, vol. 17(15), pages 1-17, July.
    16. Ak, Mümtaz & Kentel, Elcin & Savasaneril, Secil, 2019. "Quantifying the revenue gain of operating a cascade hydropower plant system as a pumped-storage hydropower system," Renewable Energy, Elsevier, vol. 139(C), pages 739-752.
    17. Cheng, Chun-Tian & Shen, Jian-Jian & Wu, Xin-Yu & Chau, Kwok-wing, 2012. "Operation challenges for fast-growing China's hydropower systems and respondence to energy saving and emission reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2386-2393.
    18. Zhang, Wen Yu & Hong, Wei-Chiang & Dong, Yucheng & Tsai, Gary & Sung, Jing-Tian & Fan, Guo-feng, 2012. "Application of SVR with chaotic GASA algorithm in cyclic electric load forecasting," Energy, Elsevier, vol. 45(1), pages 850-858.
    19. Seyed-Mohammad Hosseini-Moghari & Reza Morovati & Mohammad Moghadas & Shahab Araghinejad, 2015. "Optimum Operation of Reservoir Using Two Evolutionary Algorithms: Imperialist Competitive Algorithm (ICA) and Cuckoo Optimization Algorithm (COA)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3749-3769, August.
    20. Xiong, Xin & Hu, Xi & Tian, Tian & Guo, Huan & Liao, Han, 2022. "A novel Optimized initial condition and Seasonal division based Grey Seasonal Variation Index model for hydropower generation," Applied Energy, Elsevier, vol. 328(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:38:y:2024:i:1:d:10.1007_s11269-023-03658-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.