IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i21p5983-d280970.html
   My bibliography  Save this article

Carbon Footprints and Consumer Lifestyles: An Analysis of Lifestyle Factors and Gap Analysis by Consumer Segment in Japan

Author

Listed:
  • Ryu Koide

    (Institute for Global Environmental Strategies, Hayama 240-0115, Japan)

  • Michael Lettenmeier

    (Department of Design, Aalto University, 00076 Aalto, Finland
    D-Mat Ltd., 00640 Helsinki, Finland
    Wuppertal Institute for Climate, Environment and Energy, 42013 Wuppertal, Germany)

  • Satoshi Kojima

    (Institute for Global Environmental Strategies, Hayama 240-0115, Japan)

  • Viivi Toivio

    (Department of Design, Aalto University, 00076 Aalto, Finland
    D-Mat Ltd., 00640 Helsinki, Finland)

  • Aryanie Amellina

    (South Pole, Jakarta 12160, Indonesia)

  • Lewis Akenji

    (SEED, 10559 Berlin, Germany)

Abstract

Addressing the prevailing mode of high-carbon lifestyles is crucial for the transition towards a net-zero carbon society. Existing studies fail to fully investigate the underlining factors of unsustainable lifestyles beyond individual determinants nor consider the gaps between current footprints and reduction targets. This study examines latent lifestyle factors related to carbon footprints and analyzes gaps between decarbonization targets and current lifestyles of major consumer segments through exploratory factor analysis and cluster analysis. As a case study on Japanese households, it estimates carbon footprints of over 47,000 households using expenditure survey microdata, and identifies high-carbon lifestyle factors and consumer segments by multivariate regression analysis, factor analysis, and cluster analysis. Income, savings, family composition, house size and type, ownership of durables and automobiles, and work style were confirmed as determinants of high-footprint Japanese households, with eight lifestyles factors, including long-distance leisure, materialistic consumption, and meat-rich diets, identified as the main contributory factors. The study revealed a five-fold difference between lowest and highest footprint segments, with all segments overshooting the 2030 and 2050 decarbonization targets. The findings imply the urgent need for policies tailored to diverse consumer segments and to address the underlying causes of high-carbon lifestyles especially of high-carbon segments.

Suggested Citation

  • Ryu Koide & Michael Lettenmeier & Satoshi Kojima & Viivi Toivio & Aryanie Amellina & Lewis Akenji, 2019. "Carbon Footprints and Consumer Lifestyles: An Analysis of Lifestyle Factors and Gap Analysis by Consumer Segment in Japan," Sustainability, MDPI, vol. 11(21), pages 1-25, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:5983-:d:280970
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/21/5983/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/21/5983/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Büchs, Milena & Schnepf, Sylke V., 2013. "Who emits most? Associations between socio-economic factors and UK households' home energy, transport, indirect and total CO2 emissions," Ecological Economics, Elsevier, vol. 90(C), pages 114-123.
    2. Bin, Shui & Dowlatabadi, Hadi, 2005. "Consumer lifestyle approach to US energy use and the related CO2 emissions," Energy Policy, Elsevier, vol. 33(2), pages 197-208, January.
    3. Kerkhof, Annemarie C. & Nonhebel, Sanderine & Moll, Henri C., 2009. "Relating the environmental impact of consumption to household expenditures: An input-output analysis," Ecological Economics, Elsevier, vol. 68(4), pages 1160-1170, February.
    4. Weber, Christoph & Perrels, Adriaan, 2000. "Modelling lifestyle effects on energy demand and related emissions," Energy Policy, Elsevier, vol. 28(8), pages 549-566, July.
    5. Gill, Bernhard & Moeller, Simon, 2018. "GHG Emissions and the Rural-Urban Divide. A Carbon Footprint Analysis Based on the German Official Income and Expenditure Survey," Ecological Economics, Elsevier, vol. 145(C), pages 160-169.
    6. Fang, Kai & Dong, Liang & Ren, Jingzheng & Zhang, Qifeng & Han, Ling & Fu, Huizhen, 2017. "Carbon footprints of urban transition: Tracking circular economy promotions in Guiyang, China," Ecological Modelling, Elsevier, vol. 365(C), pages 30-44.
    7. Arnold Tukker & Maurie J. Cohen & Klaus Hubacek & Oksana Mont, 2010. "The Impacts of Household Consumption and Options for Change," Journal of Industrial Ecology, Yale University, vol. 14(1), pages 13-30, January.
    8. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    9. Perrels, Adriaan & Weber, Christoph, 2000. "Modelling Impacts of Lifestyle on Energy Demand and Related Emissions," Discussion Papers 228, VATT Institute for Economic Research.
    10. Ala-Mantila, Sanna & Heinonen, Jukka & Junnila, Seppo, 2014. "Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis," Ecological Economics, Elsevier, vol. 104(C), pages 129-139.
    11. Teubler, Jens & Buhl, Johannes & Lettenmeier, Michael & Greiff, Kathrin & Liedtke, Christa, 2018. "A Household's Burden – The Embodied Resource Use of Household Equipment in Germany," Ecological Economics, Elsevier, vol. 146(C), pages 96-105.
    12. John Horn, 1965. "A rationale and test for the number of factors in factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 30(2), pages 179-185, June.
    13. Lenzen, Manfred & Wier, Mette & Cohen, Claude & Hayami, Hitoshi & Pachauri, Shonali & Schaeffer, Roberto, 2006. "A comparative multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and Japan," Energy, Elsevier, vol. 31(2), pages 181-207.
    14. Nidhi Tewathia, 2018. "Consumption Behaviour and Conservation of Household Electricity in Delhi: A Factor Analysis Approach," Asian Bulletin of Energy Economics and Technology, Asian Online Journal Publishing Group, vol. 4(1), pages 22-35.
    15. Giovanni Baiocchi & Jan Minx & Klaus Hubacek, 2010. "The Impact of Social Factors and Consumer Behavior on Carbon Dioxide Emissions in the United Kingdom," Journal of Industrial Ecology, Yale University, vol. 14(1), pages 50-72, January.
    16. Weber, Christopher L. & Matthews, H. Scott, 2008. "Quantifying the global and distributional aspects of American household carbon footprint," Ecological Economics, Elsevier, vol. 66(2-3), pages 379-391, June.
    17. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, October.
    18. Tuuli Hirvilammi & Senja Laakso & Michael Lettenmeier & Satu Lähteenoja, 2013. "Studying Well-being and its Environmental Impacts: A Case Study of Minimum Income Receivers in Finland," Journal of Human Development and Capabilities, Taylor & Francis Journals, vol. 14(1), pages 134-154, February.
    19. Bin, Shui & Dowlatabadi, Hadi, 2005. "Corrigendum to "Consumer lifestyles approach to US energy use and the related CO2 emissions": [Energy Policy 33 (2005) 197-208]," Energy Policy, Elsevier, vol. 33(10), pages 1362-1363, July.
    20. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, October.
    21. Nidhi Tewathia, 2018. "Consumption Behaviour and Conservation of Household Electricity in Delhi: A Factor Analysis Approach," Asian Bulletin of Energy Economics and Technology, Asian Online Journal Publishing Group, vol. 4(1), pages 22-35.
    22. Jonas Nässén & Jörgen Larsson, 2015. "Would shorter working time reduce greenhouse gas emissions? An analysis of time use and consumption in Swedish households," Environment and Planning C, , vol. 33(4), pages 726-745, August.
    23. Druckman, Angela & Jackson, Tim, 2010. "The bare necessities: How much household carbon do we really need?," Ecological Economics, Elsevier, vol. 69(9), pages 1794-1804, July.
    24. Michael Lettenmeier & Tuuli Hirvilammi & Senja Laakso & Satu Lähteenoja & Kristiina Aalto, 2012. "Material Footprint of Low-Income Households in Finland—Consequences for the Sustainability Debate," Sustainability, MDPI, vol. 4(7), pages 1-22, June.
    25. Jalas, Mikko & Juntunen, Jouni K., 2015. "Energy intensive lifestyles: Time use, the activity patterns of consumers, and related energy demands in Finland," Ecological Economics, Elsevier, vol. 113(C), pages 51-59.
    26. Áróra Árnadóttir & Michał Czepkiewicz & Jukka Heinonen, 2019. "The Geographical Distribution and Correlates of Pro-Environmental Attitudes and Behaviors in an Urban Region," Energies, MDPI, vol. 12(8), pages 1-29, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Yida & Long, Yin & Liu, Qiaoling & Dowaki, Kiyoshi & Ihara, Tomohiko, 2020. "Carbon emission quantification and decarbonization policy exploration for the household sector - Evidence from 51 Japanese cities," Energy Policy, Elsevier, vol. 140(C).
    2. Abulibdeh, A. & Jawarneh, R.N. & Al-Awadhi, T. & Abdullah, M.M. & Abulibdeh, R. & El Kenawy, A.M., 2024. "Assessment of carbon footprint in Qatar's electricity sector: A comparative analysis across various building typologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Gilang Hardadi & Alexander Buchholz & Stefan Pauliuk, 2021. "Implications of the distribution of German household environmental footprints across income groups for integrating environmental and social policy design," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 95-113, February.
    4. Caixia Mao & Ryu Koide & Lewis Akenji, 2020. "Applying Foresight to Policy Design for a Long-Term Transition to Sustainable Lifestyles," Sustainability, MDPI, vol. 12(15), pages 1-20, July.
    5. Yujiro Hirano & Tomohiko Ihara & Masayuki Hara & Keita Honjo, 2020. "Estimation of Direct and Indirect Household CO 2 Emissions in 49 Japanese Cities with Consideration of Regional Conditions," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
    6. Chen, Peipei & Wu, Yi & Zhong, Honglin & Long, Yin & Meng, Jing, 2022. "Exploring household emission patterns and driving factors in Japan using machine learning methods," Applied Energy, Elsevier, vol. 307(C).
    7. Koide, R. & Murakami, S. & Nansai, K., 2022. "Prioritising low-risk and high-potential circular economy strategies for decarbonisation: A meta-analysis on consumer-oriented product-service systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    8. Yasuhiko Hotta & Tomohiro Tasaki & Ryu Koide, 2021. "Expansion of Policy Domain of Sustainable Consumption and Production (SCP): Challenges and Opportunities for Policy Design," Sustainability, MDPI, vol. 13(12), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Huang & Shaohui Zhang & Changxin Liu, 2018. "Comparing Urban and Rural Household CO 2 Emissions—Case from China’s Four Megacities: Beijing, Tianjin, Shanghai, and Chongqing," Energies, MDPI, vol. 11(5), pages 1-17, May.
    2. Jiang, Yida & Long, Yin & Liu, Qiaoling & Dowaki, Kiyoshi & Ihara, Tomohiko, 2020. "Carbon emission quantification and decarbonization policy exploration for the household sector - Evidence from 51 Japanese cities," Energy Policy, Elsevier, vol. 140(C).
    3. Heidi Bruderer Enzler & Andreas Diekmann, 2015. "Environmental Impact and Pro-Environmental Behavior: Correlations to Income and Environmental Concern," ETH Zurich Sociology Working Papers 9, ETH Zurich, Chair of Sociology.
    4. Li, Jun & Zhang, Dayong & Su, Bin, 2019. "The Impact of Social Awareness and Lifestyles on Household Carbon Emissions in China," Ecological Economics, Elsevier, vol. 160(C), pages 145-155.
    5. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    6. Nieves, J.A. & Aristizábal, A.J. & Dyner, I. & Báez, O. & Ospina, D.H., 2019. "Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application," Energy, Elsevier, vol. 169(C), pages 380-397.
    7. Golley, Jane & Meng, Xin, 2012. "Income inequality and carbon dioxide emissions: The case of Chinese urban households," Energy Economics, Elsevier, vol. 34(6), pages 1864-1872.
    8. Tilov, Ivan & Farsi, Mehdi & Volland, Benjamin, 2019. "Interactions in Swiss households’ energy demand: A holistic approach," Energy Policy, Elsevier, vol. 128(C), pages 136-149.
    9. Theine, Hendrik & Humer, Stefan & Moser, Mathias & Schnetzer, Matthias, 2022. "Emissions inequality: Disparities in income, expenditure, and the carbon footprint in Austria," Ecological Economics, Elsevier, vol. 197(C).
    10. Moises Neil V. Seriño & Stephan Klasen, 2015. "Estimation and Determinants of the Philippines' Household Carbon Footprint," The Developing Economies, Institute of Developing Economies, vol. 53(1), pages 44-62, March.
    11. Age Poom & Rein Ahas, 2016. "How Does the Environmental Load of Household Consumption Depend on Residential Location?," Sustainability, MDPI, vol. 8(9), pages 1-18, August.
    12. Berthe, Alexandre & Elie, Luc, 2015. "Mechanisms explaining the impact of economic inequality on environmental deterioration," Ecological Economics, Elsevier, vol. 116(C), pages 191-200.
    13. Ala-Mantila, Sanna & Heinonen, Jukka & Junnila, Seppo, 2014. "Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis," Ecological Economics, Elsevier, vol. 104(C), pages 129-139.
    14. Wiedenhofer, Dominik & Lenzen, Manfred & Steinberger, Julia K., 2013. "Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications," Energy Policy, Elsevier, vol. 63(C), pages 696-707.
    15. Andreas Froemelt & René Buffat & Stefanie Hellweg, 2020. "Machine learning based modeling of households: A regionalized bottom‐up approach to investigate consumption‐induced environmental impacts," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 639-652, June.
    16. Hongwu Zhang & Lequan Zhang & Keying Wang & Xunpeng Shi, 2019. "Unveiling Key Drivers of Indirect Carbon Emissions of Chinese Older Households," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    17. Lévay, Petra Zsuzsa & Vanhille, Josefine & Goedemé, Tim & Verbist, Gerlinde, 2021. "The association between the carbon footprint and the socio-economic characteristics of Belgian households," Ecological Economics, Elsevier, vol. 186(C).
    18. Tao Lin & Yunjun Yu & Xuemei Bai & Ling Feng & Jin Wang, 2013. "Greenhouse Gas Emissions Accounting of Urban Residential Consumption: A Household Survey Based Approach," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-12, February.
    19. Yosuke Shigetomi & Keisuke Nansai & Shigemi Kagawa & Susumu Tohno, 2016. "Influence of income difference on carbon and material footprints for critical metals: the case of Japanese households," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 5(1), pages 1-19, December.
    20. Duarte, Rosa & Mainar, Alfredo & Sánchez-Chóliz, Julio, 2012. "Social groups and CO2 emissions in Spanish households," Energy Policy, Elsevier, vol. 44(C), pages 441-450.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:21:p:5983-:d:280970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.