A high-performance tri-electrolyte aluminum-air microfluidic cell with a co-laminar-flow-and-bridging-electrolyte configuration
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2021.118168
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Jaechan Ryu & Haeseong Jang & Joohyuk Park & Youngshin Yoo & Minjoon Park & Jaephil Cho, 2018. "Seed-mediated atomic-scale reconstruction of silver manganate nanoplates for oxygen reduction towards high-energy aluminum-air flow batteries," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
- Chen, Binbin & Leung, Dennis Y.C. & Xuan, Jin & Wang, Huizhi, 2017. "A mixed-pH dual-electrolyte microfluidic aluminum–air cell with high performance," Applied Energy, Elsevier, vol. 185(P2), pages 1303-1308.
- Shkolnikov, E.I. & Zhuk, A.Z. & Vlaskin, M.S., 2011. "Aluminum as energy carrier: Feasibility analysis and current technologies overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4611-4623.
- Pemika Teabnamang & Wathanyu Kao-ian & Mai Thanh Nguyen & Tetsu Yonezawa & Rongrong Cheacharoen & Soorathep Kheawhom, 2020. "High-Capacity Dual-Electrolyte Aluminum–Air Battery with Circulating Methanol Anolyte," Energies, MDPI, vol. 13(9), pages 1-14, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wei, Manhui & Wang, Keliang & Zuo, Yayu & Wang, Hengwei & Zhao, Siyuan & Zhang, Pengfei & Zhang, Songmao & Shui, Youfu & Pei, Pucheng & Chen, Junfeng, 2023. "Inner Zn layer and outer glutamic acid film as efficient dual-protective interface of Al anode in Al-air fuel cell," Energy, Elsevier, vol. 267(C).
- Wei, Manhui & Wang, Keliang & Pei, Pucheng & Zuo, Yayu & Zhong, Liping & Shang, Nuo & Wang, Hengwei & Chen, Junfeng & Zhang, Pengfei & Chen, Zhuo, 2022. "An enhanced-performance Al-air battery optimizing the alkaline electrolyte with a strong Lewis acid ZnCl2," Applied Energy, Elsevier, vol. 324(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pemika Teabnamang & Wathanyu Kao-ian & Mai Thanh Nguyen & Tetsu Yonezawa & Rongrong Cheacharoen & Soorathep Kheawhom, 2020. "High-Capacity Dual-Electrolyte Aluminum–Air Battery with Circulating Methanol Anolyte," Energies, MDPI, vol. 13(9), pages 1-14, May.
- Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).
- Tan, P. & Jiang, H.R. & Zhu, X.B. & An, L. & Jung, C.Y. & Wu, M.C. & Shi, L. & Shyy, W. & Zhao, T.S., 2017. "Advances and challenges in lithium-air batteries," Applied Energy, Elsevier, vol. 204(C), pages 780-806.
- Wang, Hongqi & Wang, Zhi & Shi, Zhihao & Gong, Xuzhong & Cao, Jianwei & Wang, Mingyong, 2017. "Facile hydrogen production from Al-water reaction promoted by choline hydroxide," Energy, Elsevier, vol. 131(C), pages 98-105.
- Yang, Weijuan & Zhang, Tianyou & Liu, Jianzhong & Wang, Zhihua & Zhou, Junhu & Cen, Kefa, 2015. "Experimental researches on hydrogen generation by aluminum with adding lithium at high temperature," Energy, Elsevier, vol. 93(P1), pages 451-457.
- Gai, Wei-Zhuo & Deng, Zhen-Yan, 2024. "Enhanced hydrogen production from Al-water reaction: Strategies, performances, mechanisms and applications," Renewable Energy, Elsevier, vol. 226(C).
- Haller, Michel Y. & Amstad, Dominik & Dudita, Mihaela & Englert, Alexander & Häberle, Andreas, 2021. "Combined heat and power production based on renewable aluminium-water reaction," Renewable Energy, Elsevier, vol. 174(C), pages 879-893.
- Yang, Weijuan & Zhang, Tianyou & Zhou, Junhu & Shi, Wei & Liu, Jianzhong & Cen, Kefa, 2015. "Experimental study on the effect of low melting point metal additives on hydrogen production in the aluminum–water reaction," Energy, Elsevier, vol. 88(C), pages 537-543.
- Maas, Pascal & Schiemann, Martin & Scherer, Viktor & Fischer, Peter & Taroata, Dan & Schmid, Günther, 2018. "Lithium as energy carrier: CFD simulations of LI combustion in a 100MW slag tap furnace," Applied Energy, Elsevier, vol. 227(C), pages 506-515.
- Wang, Yifei & Kwok, Holly Y.H. & Pan, Wending & Zhang, Huimin & Lu, Xu & Leung, Dennis Y.C., 2019. "Parametric study and optimization of a low-cost paper-based Al-air battery with corrosion inhibition ability," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Wei, Manhui & Wang, Keliang & Pei, Pucheng & Zhong, Liping & Züttel, Andreas & Pham, Thi Ha My & Shang, Nuo & Zuo, Yayu & Wang, Hengwei & Zhao, Siyuan, 2023. "Zinc carboxylate optimization strategy for extending Al-air battery system's lifetime," Applied Energy, Elsevier, vol. 350(C).
- Bergthorson, J.M. & Goroshin, S. & Soo, M.J. & Julien, P. & Palecka, J. & Frost, D.L. & Jarvis, D.J., 2015. "Direct combustion of recyclable metal fuels for zero-carbon heat and power," Applied Energy, Elsevier, vol. 160(C), pages 368-382.
- Schiemann, Martin & Bergthorson, Jeffrey & Fischer, Peter & Scherer, Viktor & Taroata, Dan & Schmid, Günther, 2016. "A review on lithium combustion," Applied Energy, Elsevier, vol. 162(C), pages 948-965.
- Garra, Patxi & Leyssens, Gontrand & Allgaier, Olivier & Schönnenbeck, Cornelius & Tschamber, Valérie & Brilhac, Jean-François & Tahtouh, Toni & Guézet, Olivier & Allano, Sylvain, 2017. "Magnesium/air combustion at pilot scale and subsequent PM and NOx emissions," Applied Energy, Elsevier, vol. 189(C), pages 578-587.
- Roberto Ercoli & Andrea Orlando & Daniele Borrini & Franco Tassi & Gabriele Bicocchi & Alberto Renzulli, 2021. "Hydrogen-Rich Gas Produced by the Chemical Neutralization of Reactive By-Products from the Screening Processes of the Secondary Aluminum Industry," Sustainability, MDPI, vol. 13(21), pages 1-17, November.
- Samir De, Biswajit & Cunningham, Joshua & Khare, Neeraj & Luo, Jing-Li & Elias, Anastasia & Basu, Suddhasatwa, 2022. "Hydrogen generation and utilization in a two-phase flow membraneless microfluidic electrolyzer-fuel cell tandem operation for micropower application," Applied Energy, Elsevier, vol. 305(C).
- Jamey Davies & Stephanus P. Du Preez & Dmitri G. Bessarabov, 2022. "The Hydrolysis of Ball-Milled Aluminum–Bismuth–Nickel Composites for On-Demand Hydrogen Generation," Energies, MDPI, vol. 15(7), pages 1-22, March.
- Debiagi, P. & Rocha, R.C. & Scholtissek, A. & Janicka, J. & Hasse, C., 2022. "Iron as a sustainable chemical carrier of renewable energy: Analysis of opportunities and challenges for retrofitting coal-fired power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
- Bergthorson, Jeffrey M. & Yavor, Yinon & Palecka, Jan & Georges, William & Soo, Michael & Vickery, James & Goroshin, Samuel & Frost, David L. & Higgins, Andrew J., 2017. "Metal-water combustion for clean propulsion and power generation," Applied Energy, Elsevier, vol. 186(P1), pages 13-27.
- Ouyang, Tiancheng & Lu, Jie & Zhao, Zhongkai & Chen, Jingxian & Xu, Peihang, 2021. "New insight on the mechanism of vibration effects in vapor-feed microfluidic fuel cell," Energy, Elsevier, vol. 225(C).
More about this item
Keywords
Tri-electrolyte; Aluminum-air cell; Microfluidic cell; Bridging electrolyte; Stability; Electrolyte recirculation performance;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921014409. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.