High-Capacity Dual-Electrolyte Aluminum–Air Battery with Circulating Methanol Anolyte
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jaechan Ryu & Haeseong Jang & Joohyuk Park & Youngshin Yoo & Minjoon Park & Jaephil Cho, 2018. "Seed-mediated atomic-scale reconstruction of silver manganate nanoplates for oxygen reduction towards high-energy aluminum-air flow batteries," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
- Yuxin Zuo & Ying Yu & Chuncheng Zuo & Chuanlong Ning & Hao Liu & Zhiqing Gu & Qianqian Cao & Ciming Shen, 2019. "Low-Temperature Performance of Al-air Batteries," Energies, MDPI, vol. 12(4), pages 1-10, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Feng, Shan & Yang, Guandong & Zheng, Dawei & Rauf, Abdur & Khan, Ubaid & Cheng, Rui & Wang, Lei & Wang, Wentao & Liu, Fude, 2022. "A high-performance tri-electrolyte aluminum-air microfluidic cell with a co-laminar-flow-and-bridging-electrolyte configuration," Applied Energy, Elsevier, vol. 307(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mohammad Ali Rajaeifar & Marco Raugei & Bernhard Steubing & Anthony Hartwell & Paul A. Anderson & Oliver Heidrich, 2021. "Life cycle assessment of lithium‐ion battery recycling using pyrometallurgical technologies," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1560-1571, December.
- Feng, Shan & Yang, Guandong & Zheng, Dawei & Rauf, Abdur & Khan, Ubaid & Cheng, Rui & Wang, Lei & Wang, Wentao & Liu, Fude, 2022. "A high-performance tri-electrolyte aluminum-air microfluidic cell with a co-laminar-flow-and-bridging-electrolyte configuration," Applied Energy, Elsevier, vol. 307(C).
- Chung-Yueh Shih & I-Chih Ni & Chih-Lin Chan & Cheng-Che Hsu & Chih-I Wu & I-Chun Cheng & Jian-Zhang Chen, 2022. "Helium Dielectric Barrier Discharge Plasma Jet (DBD Jet)-Processed Graphite Foil as Current Collector for Paper-Based Fluidic Aluminum-Air Batteries," Energies, MDPI, vol. 15(16), pages 1-11, August.
More about this item
Keywords
aluminum; aluminum–air battery; flow battery; dual electrolyte; anion exchange membrane; methanol; potassium hydroxide;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2275-:d:354079. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.