IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v306y2022ipbs030626192101357x.html
   My bibliography  Save this article

Fuel cell management system: An approach to increase its durability

Author

Listed:
  • Bahrami, Milad
  • Martin, Jean-Philippe
  • Maranzana, Gaël
  • Pierfederici, Serge
  • Weber, Mathieu
  • Didierjean, Sophie

Abstract

The lifetime and cost are two bottlenecks in the widespread use of fuel cells. Increasing the lifetime of the fuel cell can also counteract the cost justification bottleneck. However, this depends on the method of extending the life of the fuel cell. The durability of Polymer Electrolyte Membrane Fuel Cells (PEMFCs) can be improved using a management system. This management system must control the operating condition of cells or cell groups in such a way that the electrochemical and fluidic instabilities can be avoided to improve the lifetime of a stack. Developing this Fuel Cell Management System (FCMS) is challenging due to the coupling between cells inside a stack. In this paper, an FCMS is proposed. It can detect the instability of cell groups and change their reference power based on the detected instabilities. Since a mathematical model has a high ability to describe the phenomena occurring in a fuel cell, this paper uses a model to describe its operating conditions. The reference power of the cell groups can be changed using a developed power electronics structure. The last piece of the FCMS puzzle is to develop a management strategy. This strategy is developed in this paper. Eventually, the proposed system is evaluated experimentally. The experimental results validate the effectiveness of the proposed system.

Suggested Citation

  • Bahrami, Milad & Martin, Jean-Philippe & Maranzana, Gaël & Pierfederici, Serge & Weber, Mathieu & Didierjean, Sophie, 2022. "Fuel cell management system: An approach to increase its durability," Applied Energy, Elsevier, vol. 306(PB).
  • Handle: RePEc:eee:appene:v:306:y:2022:i:pb:s030626192101357x
    DOI: 10.1016/j.apenergy.2021.118070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192101357X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Milad Bahrami & Jean-Philippe Martin & Gaël Maranzana & Serge Pierfederici & Mathieu Weber & Farid Meibody-Tabar & Majid Zandi, 2020. "Multi-Stack Lifetime Improvement through Adapted Power Electronic Architecture in a Fuel Cell Hybrid System," Mathematics, MDPI, vol. 8(5), pages 1-28, May.
    2. Qiu, Diankai & Peng, Linfa & Lai, Xinmin & Ni, Meng & Lehnert, Werner, 2019. "Mechanical failure and mitigation strategies for the membrane in a proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Li, Qi & Wang, Tianhong & Li, Shihan & Chen, Weirong & Liu, Hong & Breaz, Elena & Gao, Fei, 2021. "Online extremum seeking-based optimized energy management strategy for hybrid electric tram considering fuel cell degradation," Applied Energy, Elsevier, vol. 285(C).
    4. Song, Ke & Wang, Xiaodi & Li, Feiqiang & Sorrentino, Marco & Zheng, Bailin, 2020. "Pontryagin’s minimum principle-based real-time energy management strategy for fuel cell hybrid electric vehicle considering both fuel economy and power source durability," Energy, Elsevier, vol. 205(C).
    5. Zandi, M. & Bahrami, M. & Eslami, S. & Gavagsaz-Ghoachani, R. & Payman, A. & Phattanasak, M. & Nahid-Mobarakeh, B. & Pierfederici, S., 2017. "Evaluation and comparison of economic policies to increase distributed generation capacity in the Iranian household consumption sector using photovoltaic systems and RETScreen software," Renewable Energy, Elsevier, vol. 107(C), pages 215-222.
    6. Chen, Jian & Huang, Lianghui & Yan, Chizhou & Liu, Zhiyang, 2020. "A dynamic scalable segmented model of PEM fuel cell systems with two-phase water flow," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 167(C), pages 48-64.
    7. Ren, Peng & Pei, Pucheng & Li, Yuehua & Wu, Ziyao & Chen, Dongfang & Huang, Shangwei & Jia, Xiaoning, 2019. "Diagnosis of water failures in proton exchange membrane fuel cell with zero-phase ohmic resistance and fixed-low-frequency impedance," Applied Energy, Elsevier, vol. 239(C), pages 785-792.
    8. Liu, Hao & Chen, Jian & Hissel, Daniel & Lu, Jianguo & Hou, Ming & Shao, Zhigang, 2020. "Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    9. Liu, Zhiyang & Chen, Jian & Liu, Hao & Yan, Chizhou & Hou, Yang & He, Qinggang & Zhang, Jiujun & Hissel, Daniel, 2020. "Anode purge management for hydrogen utilization and stack durability improvement of PEM fuel cell systems," Applied Energy, Elsevier, vol. 275(C).
    10. Pei, Pucheng & Wu, Ziyao & Li, Yuehua & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Improved methods to measure hydrogen crossover current in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 215(C), pages 338-347.
    11. Zhou, Yang & Ravey, Alexandre & Péra, Marie-Cecile, 2020. "Multi-mode predictive energy management for fuel cell hybrid electric vehicles using Markov driving pattern recognizer," Applied Energy, Elsevier, vol. 258(C).
    12. Bahrami, Milad & Gavagsaz-Ghoachani, Roghayeh & Zandi, Majid & Phattanasak, Matheepot & Maranzanaa, Gaël & Nahid-Mobarakeh, Babak & Pierfederici, Serge & Meibody-Tabar, Farid, 2019. "Hybrid maximum power point tracking algorithm with improved dynamic performance," Renewable Energy, Elsevier, vol. 130(C), pages 982-991.
    13. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Wu, Ziyao & Chen, Dongfang & Huang, Hao, 2019. "Characteristic analysis in lowering current density based on pressure drop for avoiding flooding in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 248(C), pages 321-329.
    14. Asensio, F.J. & San Martín, J.I. & Zamora, I. & Saldaña, G. & Oñederra, O., 2019. "Analysis of electrochemical and thermal models and modeling techniques for polymer electrolyte membrane fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuxin Yuan & Xuliang Duan & Xiaodong Yuan, 2024. "Exploring the Technological Advances and Opportunities of Developing Fuel Cell Electric Vehicles: Based on Patent Analysis," Energies, MDPI, vol. 17(17), pages 1-16, August.
    2. Huang, Ruike & Peng, Yiqiang & Yang, Jibin & Xu, Xiaohui & Deng, Pengyi, 2022. "Correlation analysis and prediction of PEM fuel cell voltage during start-stop operation based on real-world driving data," Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bizon, Nicu & Pierfederici, Serge & Bahrami, Milad & Thounthong, Phatiphat, 2022. "Power equalizer for a series fuel cell architecture based on load tracking control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    2. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Huang, Hao, 2020. "Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    3. Ahmed Mohmed Dafalla & Lin Wei & Bereket Tsegai Habte & Jian Guo & Fangming Jiang, 2022. "Membrane Electrode Assembly Degradation Modeling of Proton Exchange Membrane Fuel Cells: A Review," Energies, MDPI, vol. 15(23), pages 1-26, December.
    4. Wu, Jinglai & Zhang, Yunqing & Ruan, Jiageng & Liang, Zhaowen & Liu, Kai, 2023. "Rule and optimization combined real-time energy management strategy for minimizing cost of fuel cell hybrid electric vehicles," Energy, Elsevier, vol. 285(C).
    5. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Macias, A. & Kandidayeni, M. & Boulon, L. & Trovão, J.P., 2021. "Fuel cell-supercapacitor topologies benchmark for a three-wheel electric vehicle powertrain," Energy, Elsevier, vol. 224(C).
    7. Ren, Peng & Meng, Yining & Pei, Pucheng & Fu, Xi & Chen, Dongfang & Li, Yuehua & Zhu, Zijing & Zhang, Lu & Wang, Mingkai, 2023. "Rapid synchronous state-of-health diagnosis of membrane electrode assemblies in fuel cell stacks," Applied Energy, Elsevier, vol. 330(PA).
    8. Ke, Yuzhi & Yuan, Wei & Zhou, Feikun & Guo, Wenwen & Li, Jinguang & Zhuang, Ziyi & Su, Xiaoqing & Lu, Biaowu & Zhao, Yonghao & Tang, Yong & Chen, Yu & Song, Jianli, 2021. "A critical review on surface-pattern engineering of nafion membrane for fuel cell applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Pang, Ran & Zhang, Caizhi & Dai, Haifeng & Bai, Yunfeng & Hao, Dong & Chen, Jinrui & Zhang, Bin, 2022. "Intelligent health states recognition of fuel cell by cell voltage consistency under typical operating parameters," Applied Energy, Elsevier, vol. 305(C).
    10. Li, Bing & Wan, Kechuang & Xie, Meng & Chu, Tiankuo & Wang, Xiaolei & Li, Xiang & Yang, Daijun & Ming, Pingwen & Zhang, Cunman, 2022. "Durability degradation mechanism and consistency analysis for proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 314(C).
    11. Zheng Huang & Laisuo Su & Yunjie Yang & Linsong Gao & Xinyu Liu & Heng Huang & Yubai Li & Yongchen Song, 2023. "Three-Dimensional Simulation on the Effects of Different Parameters and Pt Loading on the Long-Term Performance of Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    12. Ren, Peng & Pei, Pucheng & Chen, Dongfang & Li, Yuehua & Wu, Ziyao & Zhang, Lu & Li, Zizhao & Wang, Mingkai & Wang, He & Wang, Bozheng & Wang, Xizhong, 2022. "Novel analytic method of membrane electrode assembly parameters for fuel cell consistency evaluation by micro-current excitation," Applied Energy, Elsevier, vol. 306(PB).
    13. Halder, Pobitra & Babaie, Meisam & Salek, Farhad & Shah, Kalpit & Stevanovic, Svetlana & Bodisco, Timothy A. & Zare, Ali, 2024. "Performance, emissions and economic analyses of hydrogen fuel cell vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    14. Milad Bahrami & Jean-Philippe Martin & Gaël Maranzana & Serge Pierfederici & Mathieu Weber & Farid Meibody-Tabar & Majid Zandi, 2020. "Multi-Stack Lifetime Improvement through Adapted Power Electronic Architecture in a Fuel Cell Hybrid System," Mathematics, MDPI, vol. 8(5), pages 1-28, May.
    15. Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Real-time energy management for fuel cell electric vehicle using speed prediction-based model predictive control considering performance degradation," Applied Energy, Elsevier, vol. 304(C).
    16. Jinquan, Guo & Hongwen, He & Jianwei, Li & Qingwu, Liu, 2022. "Driving information process system-based real-time energy management for the fuel cell bus to minimize fuel cell engine aging and energy consumption," Energy, Elsevier, vol. 248(C).
    17. Deng, Zhihua & Chan, Siew Hwa & Chen, Qihong & Liu, Hao & Zhang, Liyan & Zhou, Keliang & Tong, Sirui & Fu, Zhichao, 2023. "Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system," Applied Energy, Elsevier, vol. 331(C).
    18. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    19. Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Wu, Ziyao & Chen, Dongfang & Huang, Hao, 2019. "Characteristic analysis in lowering current density based on pressure drop for avoiding flooding in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 248(C), pages 321-329.
    20. Yousefi Tehrani, Mehran & Mirfarsi, Seyed Hesam & Rowshanzamir, Soosan, 2022. "Mechanical stress and strain investigation of sulfonated Poly(ether ether ketone) proton exchange membrane in fuel cells: A numerical study," Renewable Energy, Elsevier, vol. 184(C), pages 182-200.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:306:y:2022:i:pb:s030626192101357x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.