IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9554-d1005649.html
   My bibliography  Save this article

An Overview of Energy Access Solutions for Rural Healthcare Facilities

Author

Listed:
  • Lanre Olatomiwa

    (Department of Electrical & Electronics Engineering, Federal University of Technology, Minna P.M.B. 65, Niger State, Nigeria
    Department of Electrical & Electronic Engineering Science, University of Johannesburg, Johannesburg 2006, South Africa)

  • Ahmad A. Sadiq

    (Department of Electrical & Electronics Engineering, Federal University of Technology, Minna P.M.B. 65, Niger State, Nigeria)

  • Omowunmi Mary Longe

    (Department of Electrical & Electronic Engineering Science, University of Johannesburg, Johannesburg 2006, South Africa)

  • James G. Ambafi

    (Department of Electrical & Electronics Engineering, Federal University of Technology, Minna P.M.B. 65, Niger State, Nigeria)

  • Kufre Esenowo Jack

    (Department of Mechatronics Engineering, Federal University of Technology, Minna P.M.B. 65, Niger State, Nigeria)

  • Toyeeb Adekunle Abd'azeez

    (Department of Electrical & Electronics Engineering, Federal University of Technology, Minna P.M.B. 65, Niger State, Nigeria)

  • Samuel Adeniyi

    (Department of Mechatronics Engineering, Federal University of Technology, Minna P.M.B. 65, Niger State, Nigeria)

Abstract

Quality in healthcare service is essential in giving rural dwellers a good standard of living. It has been established that many rural locations in Sub-Saharan Africa away from the grid connection have difficulty accessing electricity. The inaccessibility of reliable energy and essential medical equipment was the leading barrier to improved healthcare delivery in these rural locations. The deficiency of basic medical equipment to power essential services due to limited or unreliable electricity access has reduced rural healthcare workers’ care capabilities, resulting in higher mortality rates. This paper, therefore, reviews the existing energy solutions for rural healthcare facilities, thereby analysing different approaches and the geographical energy mix and ascertaining the effectiveness of various techniques and energy mix as solutions to effective healthcare delivery in healthcare centres. Hybrid Renewable Energy Sources (HRES) microsystems, like microgrids incorporated with solar panels and battery, is identified to ensure higher and more reliable energy access in rural healthcare centres. At the same time, the adoption of Demand Side Management (DSM) in the HRES deployment in countryside healthcare facilities is reported to decrease the initial cost of installation and improve efficiency. Lastly, in improving energy access, rural electrification planning is achieved through modelling tools related to energy access modelling.

Suggested Citation

  • Lanre Olatomiwa & Ahmad A. Sadiq & Omowunmi Mary Longe & James G. Ambafi & Kufre Esenowo Jack & Toyeeb Adekunle Abd'azeez & Samuel Adeniyi, 2022. "An Overview of Energy Access Solutions for Rural Healthcare Facilities," Energies, MDPI, vol. 15(24), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9554-:d:1005649
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9554/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9554/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    2. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    3. George Kyriakarakos & Anastasios Dounis, 2020. "Intelligent Management of Distributed Energy Resources for Increased Resilience and Environmental Sustainability of Hospitals," Sustainability, MDPI, vol. 12(18), pages 1-4, September.
    4. Lemence, Allen Lemuel G. & Tamayao, Mili-Ann M., 2021. "Energy consumption profile estimation and benefits of hybrid solar energy system adoption for rural health units in the Philippines," Renewable Energy, Elsevier, vol. 178(C), pages 651-668.
    5. Omowunmi Mary Longe & Khmaies Ouahada & Suvendi Rimer & Hendrik C. Ferreira & A. J. Han Vinck, 2017. "Distributed Optimisation Algorithm for Demand Side Management in a Grid-Connected Smart Microgrid," Sustainability, MDPI, vol. 9(7), pages 1-16, June.
    6. Maggio, G. & Squadrito, G. & Nicita, A., 2022. "Hydrogen and medical oxygen by renewable energy based electrolysis: A green and economically viable route," Applied Energy, Elsevier, vol. 306(PA).
    7. Akinyele, D.O. & Rayudu, R.K., 2016. "Community-based hybrid electricity supply system: A practical and comparative approach," Applied Energy, Elsevier, vol. 171(C), pages 608-628.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nathalie Spittler & Ganna Gladkykh & Arnaud Diemer & Brynhildur Davidsdottir, 2019. "Understanding the Current Energy Paradigm and Energy System Models for More Sustainable Energy System Development," Post-Print hal-02127724, HAL.
    2. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Laszlo Szabo & Magda Moner- Girona & Arnulf Jäger-Waldau & Ioannis Kougias & Andras Mezosi & Fernando Fahl & Sandor Szabo, 2024. "Impacts of large-scale deployment of vertical bifacial photovoltaics on European electricity market dynamics," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    4. Yazdanie, M. & Orehounig, K., 2021. "Advancing urban energy system planning and modeling approaches: Gaps and solutions in perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Gyanwali, Khem & Komiyama, Ryoichi & Fujii, Yasumasa, 2020. "Representing hydropower in the dynamic power sector model and assessing clean energy deployment in the power generation mix of Nepal," Energy, Elsevier, vol. 202(C).
    6. van Ouwerkerk, Jonas & Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Torralba-Díaz, Laura & Bußar, Christian, 2022. "Impacts of power sector model features on optimal capacity expansion: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    7. Thimet, P.J. & Mavromatidis, G., 2022. "Review of model-based electricity system transition scenarios: An analysis for Switzerland, Germany, France, and Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Haugen, Mari & Blaisdell-Pijuan, Paris L. & Botterud, Audun & Levin, Todd & Zhou, Zhi & Belsnes, Michael & Korpås, Magnus & Somani, Abhishek, 2024. "Power market models for the clean energy transition: State of the art and future research needs," Applied Energy, Elsevier, vol. 357(C).
    9. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Wilson, Uwemedimo N. & Eterigho-Ikelegbe, Orevaoghene, 2021. "Update on current approaches, challenges, and prospects of modeling and simulation in renewable and sustainable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Blanco, Herib & Leaver, Jonathan & Dodds, Paul E. & Dickinson, Robert & García-Gusano, Diego & Iribarren, Diego & Lind, Arne & Wang, Changlong & Danebergs, Janis & Baumann, Martin, 2022. "A taxonomy of models for investigating hydrogen energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Nathalie Spittler & Ganna Gladkykh & Arnaud Diemer & Brynhildur Davidsdottir, 2019. "Understanding the Current Energy Paradigm and Energy System Models for More Sustainable Energy System Development," Energies, MDPI, vol. 12(8), pages 1-22, April.
    12. Oikonomou, Konstantinos & Tarroja, Brian & Kern, Jordan & Voisin, Nathalie, 2022. "Core process representation in power system operational models: Gaps, challenges, and opportunities for multisector dynamics research," Energy, Elsevier, vol. 238(PC).
    13. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Felder, F.A. & Kumar, P., 2021. "A review of existing deep decarbonization models and their potential in policymaking," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    15. Prina, Matteo Giacomo & Groppi, Daniele & Nastasi, Benedetto & Garcia, Davide Astiaso, 2021. "Bottom-up energy system models applied to sustainable islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    16. Md. Nasimul Islam Maruf, 2019. "Sector Coupling in the North Sea Region—A Review on the Energy System Modelling Perspective," Energies, MDPI, vol. 12(22), pages 1-35, November.
    17. Spittler, Nathalie & Shafiei, Ehsan & Davidsdottir, Brynhildur & Juliusson, Egill, 2020. "Modelling geothermal resource utilization by incorporating resource dynamics, capacity expansion, and development costs," Energy, Elsevier, vol. 190(C).
    18. Vaccaro, Roberto & Rocco, Matteo V., 2021. "Quantifying the impact of low carbon transition scenarios at regional level through soft-linked energy and economy models: The case of South-Tyrol Province in Italy," Energy, Elsevier, vol. 220(C).
    19. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    20. Mier, Mathias & Azarova, Valeriya, 2024. "Investment cost specifications revisited," Energy Policy, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9554-:d:1005649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.