IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5292-d1505920.html
   My bibliography  Save this article

Research on the Arrangement Scheme of Spirally Twisted Tape Inserts in a Grate Furnace

Author

Listed:
  • Chen Yang

    (China Ship Scientific Research Center, Wuxi 214082, China)

  • Jingxian Kong

    (Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China)

  • Xinji Chen

    (Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China)

  • Zhijiang Jin

    (Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China)

  • Jinyuan Qian

    (Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract

To eliminate the flow dead zone and homogenize the asymmetric flow field of a grate furnace, spirally twisted tape inserts (STTIs) with a pitch ratio of 1.5 were installed in the vertical flues of an SCL1000-13.5/450 grate boiler. The arrangement schemes found to be present inside the chosen 1000 t/d grate furnace, determined using the orthogonal experimental method, included separate installation in chamber II, separate placement in chamber III, and simultaneous arrangement in both chamber II and chamber III. The effects of row spacing H , column spacing W , and mounting angle φ were investigated by means of the practicable and feasible numerical simulation method. With a focus on the uniformity degree of the flue gas, the results showed that temperature distribution is directly correlated with the velocity field. When it comes to the uniformity of the flow field, the exclusive use of STTIs in chamber II was better than that in chamber III. Under the optimal combination scheme of STTIs in both chamber II and chamber III (scheme N 3 23 ), the exhaust gas temperature reached the minimum value and the uniformity index of temperature increased to the range of 0.994~0.997. The findings in this work could provide a reference for the optimization of the flow field in a grate furnace.

Suggested Citation

  • Chen Yang & Jingxian Kong & Xinji Chen & Zhijiang Jin & Jinyuan Qian, 2024. "Research on the Arrangement Scheme of Spirally Twisted Tape Inserts in a Grate Furnace," Energies, MDPI, vol. 17(21), pages 1-23, October.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5292-:d:1505920
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5292/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5292/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peiyuan Pan & Meiyan Zhang & Gang Xu & Heng Chen & Xiaona Song & Tong Liu, 2020. "Thermodynamic and Economic Analyses of a New Waste-to-Energy System Incorporated with a Biomass-Fired Power Plant," Energies, MDPI, vol. 13(17), pages 1-20, August.
    2. Gu, Tianbao & Ma, Wenchao & Berning, Torsten & Guo, Zhenning & Andersson, Ronnie & Yin, Chungen, 2022. "Advanced simulation of a 750 t/d municipal solid waste grate boiler to better accommodate feedstock changes due to waste classification," Energy, Elsevier, vol. 254(PB).
    3. Zadravec, Tomas & Yin, Chungen & Kokalj, Filip & Samec, Niko & Rajh, Boštjan, 2020. "The impacts of different profiles of the grate inlet conditions on freeboard CFD in a waste wood-fired grate boiler," Applied Energy, Elsevier, vol. 268(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Sousa, Moisés Abreu & Cancino, Leonel R. & Deschamps, Isadora Schramm & Bazzo, Edson, 2024. "CRFD modeling of high-temperature reciprocating grate degradation in a 15 t/h eucalyptus wood chip boiler," Renewable Energy, Elsevier, vol. 230(C).
    2. Ma, Junfang & Liu, Jiaxun & Jiang, Xiumin & Zhang, Hai, 2021. "A two-dimensional distributed activation energy model for pyrolysis of solid fuels," Energy, Elsevier, vol. 230(C).
    3. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Su, Xianqiang & Chen, Xinke & Fang, Qingyan & Ma, Lun & Tan, Peng & Zhang, Cheng & Chen, Gang & Yin, Chungen, 2024. "An integrated model for flexible simulation of biomass combustion in a travelling grate-fired boiler," Energy, Elsevier, vol. 307(C).
    5. Yongqi Liang & Jian Tang & Heng Xia & Loai Aljerf & Bingyin Gao & Mulugeta Legesse Akele, 2023. "Three-Dimensional Numerical Modeling and Analysis for the Municipal Solid-Waste Incineration of the Grate Furnace for Particulate-Matter Generation," Sustainability, MDPI, vol. 15(16), pages 1-22, August.
    6. Liu, Yuhao & Li, Aijun & Guo, Guangzhao & Zhang, Junwei & Ren, Yang & Dong, Lu & Gong, Lifang & Hu, Hongyun & Yao, Hong & Naruse, Ichiro, 2024. "Comparative life cycle assessment of organic industrial solid waste co-disposal in a MSW incineration plant," Energy, Elsevier, vol. 305(C).
    7. Savelii Kukharets & Algirdas Jasinskas & Gennadii Golub & Olena Sukmaniuk & Taras Hutsol & Krzysztof Mudryk & Jonas Čėsna & Szymon Glowacki & Iryna Horetska, 2023. "The Experimental Study of the Efficiency of the Gasification Process of the Fast-Growing Willow Biomass in a Downdraft Gasifier," Energies, MDPI, vol. 16(2), pages 1-12, January.
    8. Álvarez-Bermúdez, César & Anca-Couce, Andrés & Chapela, Sergio & Scharler, Robert & Buchmayr, Markus & Gómez, Miguel Ángel & Porteiro, Jacobo, 2023. "Validation of a biomass conversion mechanism by Eulerian modelling of a fixed-bed system under low primary air conditions," Renewable Energy, Elsevier, vol. 215(C).
    9. Liu, Xiaozhou & Zhu, Guangyu & Asim, Taimoor & Mishra, Rakesh, 2022. "Application of momentum flux method for the design of an α-shaped flame incinerator fueled with two-component solid waste," Energy, Elsevier, vol. 248(C).
    10. Laubscher, Ryno & De Villiers, Etienne, 2021. "Integrated mathematical modelling of a 105 t/h biomass fired industrial watertube boiler system with varying fuel moisture content," Energy, Elsevier, vol. 228(C).
    11. Igor Donskoy, 2023. "Particle Agglomeration of Biomass and Plastic Waste during Their Thermochemical Fixed-Bed Conversion," Energies, MDPI, vol. 16(12), pages 1-25, June.
    12. Xue, Xiaojun & Lv, Jiayang & Chen, Heng & Xu, Gang & Li, Qiubai, 2022. "Thermodynamic and economic analyses of a new compressed air energy storage system incorporated with a waste-to-energy plant and a biogas power plant," Energy, Elsevier, vol. 261(PB).
    13. Pilar Lisbona & Sara Pascual & Virginia Pérez, 2021. "Evaluation of Synergies of a Biomass Power Plant and a Biogas Station with a Carbon Capture System," Energies, MDPI, vol. 14(4), pages 1-23, February.
    14. Ouyang, Denghao & Wang, Fangqian & Hong, Jinpeng & Gao, Daihong & Zhao, Xuebing, 2021. "Ferricyanide and vanadyl (V) mediated electron transfer for converting lignin to electricity by liquid flow fuel cell with power density reaching 200 mW/cm2," Applied Energy, Elsevier, vol. 304(C).
    15. Kalisz, Sylwester & Wejkowski, Robert & Maj, Izabella & Garbacz, Przemysław, 2023. "A novel approach to the dry desulfurization process by means of sodium bicarbonate: A full-scale study on SO2 emission and geochemistry of fly ash," Energy, Elsevier, vol. 279(C).
    16. Gu, Tianbao & Ma, Wenchao & Berning, Torsten & Guo, Zhenning & Andersson, Ronnie & Yin, Chungen, 2022. "Advanced simulation of a 750 t/d municipal solid waste grate boiler to better accommodate feedstock changes due to waste classification," Energy, Elsevier, vol. 254(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5292-:d:1505920. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.