IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v250y2019icp229-244.html
   My bibliography  Save this article

Multi-products co-production improves the economic feasibility of cellulosic ethanol: A case of Formiline pretreatment-based biorefining

Author

Listed:
  • Zhao, Xuebing
  • Liu, Dehua

Abstract

The economic feasibility of cellulosic ethanol is still poorer than that of grain-based ethanol because of the difficulty in lignocellulose saccharification and more complicated production process. Pretreatment greatly affects the production cost of cellulosic ethanol. In this work, Formiline pretreatment based on formic acid delignification was used to achieve a fractionation of wheat straw for co-producing ethanol, furfural and high-purity lignin. Techno-economic assessment was performed and compared with that of dilute acid-based process. For a plant with a capacity of ∼ 30,000 tonnes of ethanol/year, Formiline process required a total amount of wheat straw of 201,992 dry tonnes/year with a total capital investment of 176 MM USDs (in 2016), being 40% higher than that of dilute acid process. The total production cost was estimated to be 1,636 USDs/tonne of ethanol when no by-product credits were considered, being 42.2% higher than that of dilute acid process. However, since high value-added products such as furfural and high-purity lignin were co-produced, the production cost of ethanol with consideration of the by-product profits was significantly reduced to 196 USDs/tonne. Formiline process thus could achieve a positive value-added increase (+99 USDs/tonne of wheat straw) for wheat straw conversion; however, dilute acid process had a negative value-added increase (-68 USDs/tonne of wheat straw) if only ethanol was produced. The obtained results indicate that the production cost can be well reduced by increasing substrate-to-product conversion, reducing cellulase loading and decreasing energy consumption for solvent recovery; however, co-production of multi-products provides an promising way to increase the potential revenue.

Suggested Citation

  • Zhao, Xuebing & Liu, Dehua, 2019. "Multi-products co-production improves the economic feasibility of cellulosic ethanol: A case of Formiline pretreatment-based biorefining," Applied Energy, Elsevier, vol. 250(C), pages 229-244.
  • Handle: RePEc:eee:appene:v:250:y:2019:i:c:p:229-244
    DOI: 10.1016/j.apenergy.2019.05.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919308943
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.05.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chovau, Simon & Degrauwe, David & Van der Bruggen, Bart, 2013. "Critical analysis of techno-economic estimates for the production cost of lignocellulosic bio-ethanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 307-321.
    2. Lili Zhao & Xiliang Zhang & Jie Xu & Xunmin Ou & Shiyan Chang & Maorong Wu, 2015. "Techno-Economic Analysis of Bioethanol Production from Lignocellulosic Biomass in China: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover," Energies, MDPI, vol. 8(5), pages 1-22, May.
    3. Zhao, Xuebing & Wen, Jialong & Chen, Hongmei & Liu, Dehua, 2018. "The fate of lignin during atmospheric acetic acid pretreatment of sugarcane bagasse and the impacts on cellulose enzymatic hydrolyzability for bioethanol production," Renewable Energy, Elsevier, vol. 128(PA), pages 200-209.
    4. Mesa, Leyanis & López, Nancy & Cara, Cristóbal & Castro, Eulogio & González, Erenio & Mussatto, Solange I., 2016. "Techno-economic evaluation of strategies based on two steps organosolv pretreatment and enzymatic hydrolysis of sugarcane bagasse for ethanol production," Renewable Energy, Elsevier, vol. 86(C), pages 270-279.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Jiaxin & Zhang, Biying & Luo, Lingli & Zhang, Fan & Yi, Yanglei & Shan, Yuanyuan & Liu, Bianfang & Zhou, Yuan & Wang, Xin & Lü, Xin, 2021. "A review on recycling techniques for bioethanol production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Yu, Jianming & Chen, Sitong & Yu, Yang & Zhang, Chengcheng & Jin, Mingjie, 2024. "Influence of feedstock selection on cellulosic ethanol production based on densified biomass with calcium hydroxide and regular steam pretreatment," Renewable Energy, Elsevier, vol. 227(C).
    3. Clauser, Nicolás M. & Felissia, Fernando E. & Area, María C. & Vallejos, María E., 2021. "A framework for the design and analysis of integrated multi-product biorefineries from agricultural and forestry wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Park, Jonghyun & Yim, Jun Ho & Cho, Seong-Heon & Jung, Sungyup & Tsang, Yiu Fai & Chen, Wei-Hsin & Jeon, Young Jae & Kwon, Eilhann E., 2024. "A virtuous cycle for thermal treatment of polyvinyl chloride and fermentation of lignocellulosic biomass," Applied Energy, Elsevier, vol. 362(C).
    5. Vasilakou, Konstantina & Nimmegeers, Philippe & Thomassen, Gwenny & Billen, Pieter & Van Passel, Steven, 2023. "Assessing the future of second-generation bioethanol by 2030 – A techno-economic assessment integrating technology learning curves," Applied Energy, Elsevier, vol. 344(C).
    6. Aui, A. & Wang, Y. & Mba-Wright, M., 2021. "Evaluating the economic feasibility of cellulosic ethanol: A meta-analysis of techno-economic analysis studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Gomes, Daniel G. & Teixeira, José A. & Domingues, Lucília, 2021. "Economic determinants on the implementation of a Eucalyptus wood biorefinery producing biofuels, energy and high added-value compounds," Applied Energy, Elsevier, vol. 303(C).
    8. Ouyang, Denghao & Wang, Fangqian & Hong, Jinpeng & Gao, Daihong & Zhao, Xuebing, 2021. "Ferricyanide and vanadyl (V) mediated electron transfer for converting lignin to electricity by liquid flow fuel cell with power density reaching 200 mW/cm2," Applied Energy, Elsevier, vol. 304(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mesa, Leyanis & Martínez, Yenisleidy & Celia de Armas, Ana & González, Erenio, 2020. "Ethanol production from sugarcane straw using different configurations of fermentation and techno-economical evaluation of the best schemes," Renewable Energy, Elsevier, vol. 156(C), pages 377-388.
    2. Huang, Caoxing & Jiang, Xiao & Shen, Xiaojun & Hu, Jinguang & Tang, Wei & Wu, Xinxing & Ragauskas, Arthur & Jameel, Hasan & Meng, Xianzhi & Yong, Qiang, 2022. "Lignin-enzyme interaction: A roadblock for efficient enzymatic hydrolysis of lignocellulosics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Mesa, Leyanis & Martínez, Yenisleidy & Barrio, Edenny & González, Erenio, 2017. "Desirability function for optimization of Dilute Acid pretreatment of sugarcane straw for ethanol production and preliminary economic analysis based in three fermentation configurations," Applied Energy, Elsevier, vol. 198(C), pages 299-311.
    4. Radhakumari, Muktham & Taha, Mohamed & Shahsavari, Esmaeil & Bhargava, Suresh K. & Satyavathi, Bankupalli & Ball, Andrew S., 2017. "Pongamia pinnata seed residue – A low cost inedible resource for on-site/in-house lignocellulases and sustainable ethanol production," Renewable Energy, Elsevier, vol. 103(C), pages 682-687.
    5. Snunkhaem Echaroj & Hwai Chyuan Ong & Xiuhan Chen, 2020. "Simulation of Mixing Intensity Profile for Bioethanol Production via Two-Step Fermentation in an Unbaffled Agitator Reactor," Energies, MDPI, vol. 13(20), pages 1-11, October.
    6. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    7. Taghizadeh-Alisaraei, Ahmad & Motevali, Ali & Ghobadian, Barat, 2019. "Ethanol production from date wastes: Adapted technologies, challenges, and global potential," Renewable Energy, Elsevier, vol. 143(C), pages 1094-1110.
    8. Vasilakou, K. & Nimmegeers, P. & Billen, P. & Van Passel, S., 2023. "Geospatial environmental techno-economic assessment of pretreatment technologies for bioethanol production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    9. Bechara, Rami & Gomez, Adrien & Saint-Antonin, Valérie & Schweitzer, Jean-Marc & Maréchal, François & Ensinas, Adriano, 2018. "Review of design works for the conversion of sugarcane to first and second-generation ethanol and electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 152-164.
    10. Chen, Hongzhang & Fu, Xiaoguo, 2016. "Industrial technologies for bioethanol production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 468-478.
    11. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    12. Santos, Catarina I. & Silva, Constança C. & Mussatto, Solange I. & Osseweijer, Patricia & van der Wielen, Luuk A.M. & Posada, John A., 2018. "Integrated 1st and 2nd generation sugarcane bio-refinery for jet fuel production in Brazil: Techno-economic and greenhouse gas emissions assessment," Renewable Energy, Elsevier, vol. 129(PB), pages 733-747.
    13. Tsegaye, Bahiru & Balomajumder, Chandrajit & Roy, Partha, 2020. "Organosolv pretreatments of rice straw followed by microbial hydrolysis for efficient biofuel production," Renewable Energy, Elsevier, vol. 148(C), pages 923-934.
    14. Jay Sterling Gregg & Simon Bolwig & Teis Hansen & Ola Solér & Sara Ben Amer-Allam & Júlia Pladevall Viladecans & Antje Klitkou & Arne Fevolden, 2017. "Value Chain Structures that Define European Cellulosic Ethanol Production," Sustainability, MDPI, vol. 9(1), pages 1-17, January.
    15. Zheng, Ji-Lu & Zhu, Ya-Hong & Su, Hong-Yu & Sun, Guo-Tao & Kang, Fu-Ren & Zhu, Ming-Qiang, 2022. "Life cycle assessment and techno-economic analysis of fuel ethanol production via bio-oil fermentation based on a centralized-distribution model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Shizhong Song & Pei Liu & Jing Xu & Linwei Ma & Chinhao Chong & Min He & Xianzheng Huang & Zheng Li & Weidou Ni, 2016. "An Economic and Policy Analysis of a District Heating System Using Corn Straw Densified Fuel: A Case Study in Nong’an County in Jilin Province, China," Energies, MDPI, vol. 10(1), pages 1-22, December.
    17. Ong, Victor Zhenquan & Wu, Ta Yeong, 2020. "An application of ultrasonication in lignocellulosic biomass valorisation into bio-energy and bio-based products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    18. Adamu, Haruna & Bello, Usman & Yuguda, Abubakar Umar & Tafida, Usman Ibrahim & Jalam, Abdullahi Mohammad & Sabo, Ahmed & Qamar, Mohammad, 2023. "Production processes, techno-economic and policy challenges of bioenergy production from fruit and vegetable wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    19. Meng, Fanran & Dornau, Aritha & Mcqueen Mason, Simon J. & Thomas, Gavin H. & Conradie, Alex & McKechnie, Jon, 2021. "Bioethanol from autoclaved municipal solid waste: Assessment of environmental and financial viability under policy contexts," Applied Energy, Elsevier, vol. 298(C).
    20. Sylvia Haus & Lovisa Björnsson & Pål Börjesson, 2020. "Lignocellulosic Ethanol in a Greenhouse Gas Emission Reduction Obligation System—A Case Study of Swedish Sawdust Based-Ethanol Production," Energies, MDPI, vol. 13(5), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:250:y:2019:i:c:p:229-244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.