IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v304y2021ics0306261921011065.html
   My bibliography  Save this article

CO2 capture using ionic liquid-based hybrid solvents from experiment to process evaluation

Author

Listed:
  • Ma, Chunyan
  • Wang, Nan
  • Ye, Nannan
  • Ji, Xiaoyan

Abstract

The CO2 absorption capacity in three hybrid solvents based on butyl-3-methylimidazolium acetate ([Bmim][OAc]) and three different cosolvents (Dimethyl ethers of polyethylene glycol (DEPG250), propylene carbonate, and water) was investigated and compared, and [Bmim][OAc]-DEPG250 shows the highest CO2 absorption capacity. The effects of the mass ratio of [Bmim][OAc]-DEPG250 and temperature on their CO2 absorption capacity, density, and viscosity were further investigated. In addition, the absorption capacities of N2 and CO2 in [Bmim][OAc]-DEPG250 with the simulated flue gas as a feed gas were studied and compared with that using the pure gas as a feed gas. Thermodynamic models were used to represent the experimental data, and then process simulation and evaluation were carried out. The results show that the addition of DEPG250 dramatically decreases the viscosity, while the absorption capacity of hybrid solvents is still comparable with pure [Bmim][OAc]. The type of gas stream, that is, pure gas or gas mixture, has a negligible effect on the N2 and CO2 absorption capacity. The simulation results show that [Bmim][OAc]-DEPG250 only utilizes less than 50% of the heating duty of aqueous amine solution because of the low-pressure desorption and preheating with waste heat in this hybrid solvent-based process. The CO2 capture cost of using this [Bmim][OAc]-DEPG250 reduces by 11% compared with that of using aqueous amine solution due to the significant decrease (by 52%) in utility cost.

Suggested Citation

  • Ma, Chunyan & Wang, Nan & Ye, Nannan & Ji, Xiaoyan, 2021. "CO2 capture using ionic liquid-based hybrid solvents from experiment to process evaluation," Applied Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921011065
    DOI: 10.1016/j.apenergy.2021.117767
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921011065
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117767?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Yujiao & Björkmalm, Johanna & Ma, Chunyan & Willquist, Karin & Yngvesson, Johan & Wallberg, Ola & Ji, Xiaoyan, 2018. "Techno-economic evaluation of biogas upgrading using ionic liquids in comparison with industrially used technology in Scandinavian anaerobic digestion plants," Applied Energy, Elsevier, vol. 227(C), pages 742-750.
    2. Solomon Aforkoghene Aromada & Nils Henrik Eldrup & Fredrik Normann & Lars Erik Øi, 2020. "Techno-Economic Assessment of Different Heat Exchangers for CO 2 Capture," Energies, MDPI, vol. 13(23), pages 1-27, November.
    3. Ma, Chunyan & Liu, Chang & Lu, Xiaohua & Ji, Xiaoyan, 2018. "Techno-economic analysis and performance comparison of aqueous deep eutectic solvent and other physical absorbents for biogas upgrading," Applied Energy, Elsevier, vol. 225(C), pages 437-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Hong & Peters, Ralf & Samsun, Remzi Can & Stolten, Detlef & He, Chang & Zhou, Xiantai, 2024. "A novel intercooling carbon dioxide capture process using ionic liquids with ultra-low energy consumption," Energy, Elsevier, vol. 301(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Honglin & Ma, Chunyan & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Improving high-pressure water scrubbing through process integration and solvent selection for biogas upgrading," Applied Energy, Elsevier, vol. 276(C).
    2. Edyta Słupek & Patrycja Makoś & Jacek Gębicki, 2020. "Theoretical and Economic Evaluation of Low-Cost Deep Eutectic Solvents for Effective Biogas Upgrading to Bio-Methane," Energies, MDPI, vol. 13(13), pages 1-19, July.
    3. Tooba Qureshi & Majeda Khraisheh & Fares Almomani, 2023. "Cost and Heat Integration Analysis for CO 2 Removal Using Imidazolium-Based Ionic Liquid-ASPEN PLUS Modelling Study," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    4. Hrvoje Dorotić & Kristijan Čuljak & Josip Miškić & Tomislav Pukšec & Neven Duić, 2022. "Technical and Economic Assessment of Supermarket and Power Substation Waste Heat Integration into Existing District Heating Systems," Energies, MDPI, vol. 15(5), pages 1-29, February.
    5. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    6. Kyle McGaughy & M. Toufiq Reza, 2020. "Systems Analysis of SO 2 -CO 2 Co-Capture from a Post-Combustion Coal-Fired Power Plant in Deep Eutectic Solvents," Energies, MDPI, vol. 13(2), pages 1-15, January.
    7. Thomas Quaid & M. Toufiq Reza, 2021. "Carbon Capture from Biogas by Deep Eutectic Solvents: A COSMO Study to Evaluate the Effect of Impurities on Solubility and Selectivity," Clean Technol., MDPI, vol. 3(2), pages 1-13, June.
    8. Wantz, Eliot & Benizri, David & Dietrich, Nicolas & Hébrard, Gilles, 2022. "Rate-based modeling approach for High Pressure Water Scrubbing with unsteady gas flowrate and multicomponent absorption applied to biogas upgrading," Applied Energy, Elsevier, vol. 312(C).
    9. Chen, Yifeng & Song, Shuailong & Li, Ning & Wu, Jian & Lu, Xiaohua & Ji, Xiaoyan, 2022. "Developing hybrid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide/titanium dioxide/water absorbent for CO2 separation," Applied Energy, Elsevier, vol. 326(C).
    10. Lee, Cornelius Basil Tien Loong & Wu, Ta Yeong, 2021. "A review on solvent systems for furfural production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Chen, Yifeng & Sun, Yunhao & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "CO2 separation using a hybrid choline-2-pyrrolidine-carboxylic acid/polyethylene glycol/water absorbent," Applied Energy, Elsevier, vol. 257(C).
    12. Qyyum, Muhammad Abdul & Haider, Junaid & Qadeer, Kinza & Valentina, Valentina & Khan, Amin & Yasin, Muhammad & Aslam, Muhammad & De Guido, Giorgia & Pellegrini, Laura A. & Lee, Moonyong, 2020. "Biogas to liquefied biomethane: Assessment of 3P's–Production, processing, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Sebastian Gärtner & Thomas Marx-Schubach & Matthias Gaderer & Gerhard Schmitz & Michael Sterner, 2023. "Techno-Economic Analysis of Carbon Dioxide Separation for an Innovative Energy Concept towards Low-Emission Glass Melting," Energies, MDPI, vol. 16(5), pages 1-25, February.
    14. Kazmi, Bilal & Haider, Junaid & Ammar Taqvi, Syed Ali & Qyyum, Muhammad Abdul & Ali, Syed Imran & Hussain Awan, Zahoor Ul & Lim, Hankwon & Naqvi, Muhammad & Naqvi, Salman Raza, 2022. "Thermodynamic and economic assessment of cyano functionalized anion based ionic liquid for CO2 removal from natural gas integrated with, single mixed refrigerant liquefaction process for clean energy," Energy, Elsevier, vol. 239(PE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921011065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.