IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v195y2024ics0301421524004075.html
   My bibliography  Save this article

Flexible futures: The potential for electrical energy demand response in New Zealand

Author

Listed:
  • Williams, B.
  • Bishop, D.

Abstract

Demand response (DR) is the shifting of electricity demand to align with generation or other constraints, which can extend the lifetime of network components and increase the use of renewable energy. DR implementation depends on technical, economic, and behavioural factors, alongside country-specific factors. In this work, the existing and emerging DR potential in New Zealand is calculated, based on technological capacities. New Zealand is shown to have abundant DR potential, equivalent to 69% of national electrical energy demand, which can be harnessed through retrofitting and incentivisation. The residential, commercial, industrial, and agricultural sectors each offer considerable DR potential, with water heating, refrigeration systems, and electric motors key candidates. Electric vehicles and the electrification of industrial process heat in line with New Zealand's decarbonisation goals will offer additional DR potential, equivalent to 23% of existing electricity demand. Specific policy recommendations are provided, including the incorporation of controllability into emerging electrification projects to facilitate their use for DR. These findings suggest DR can be a solution for electricity load management in New Zealand and other countries, and provide a framework for policy makers, network operators, and electricity companies to target DR implementation, enhancing energy system resilience and sustainability.

Suggested Citation

  • Williams, B. & Bishop, D., 2024. "Flexible futures: The potential for electrical energy demand response in New Zealand," Energy Policy, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:enepol:v:195:y:2024:i:c:s0301421524004075
    DOI: 10.1016/j.enpol.2024.114387
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421524004075
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2024.114387?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:195:y:2024:i:c:s0301421524004075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.