IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v208y2017icp1007-1019.html
   My bibliography  Save this article

The impact of natural gas/hydrogen mixtures on the performance of end-use equipment: Interchangeability analysis for domestic appliances

Author

Listed:
  • de Vries, Harmen
  • Mokhov, Anatoli V.
  • Levinsky, Howard B.

Abstract

The addition of hydrogen derived from renewable power to the natural gas network is being promoted as a viable means of storing excess wind and solar energy. However, the changes in combustion properties of the natural gas upon hydrogen addition can impact the performance of the end-use equipment connected to the gas grid. We assess the changes in safety and fitness for purpose of domestic natural gas appliances when supplied with natural gas/hydrogen mixtures. Upon hydrogen addition, the fitness-for-purpose limits are governed by changes in thermal input caused by changes in Wobbe Index, while the changes in risk of flashback are used to quantify the safety aspects. A method is introduced to assess changes in the propensity for flashback, using the computed laminar burning velocity and accounting for changes in equivalence ratio caused by the variations in fuel composition. The computations are seen to reflect the experimental behavior of Bunsen flames regarding flashback upon hydrogen addition to natural gas accurately. Comparing the changes in Wobbe Index and variations in burning velocity with those experienced by domestic appliances subjected to the range of natural gases ordinarily distributed to the end user provides an unambiguous and internally consistent method to assess changes in essential performance upon hydrogen addition. Thus, limits on hydrogen addition can be derived to maintain the current level of safety and fitness for purpose without the necessity of large-scale appliance testing. The results show that the maximum fraction of hydrogen in natural gas that maintains appliance performance depends on the composition of the natural gas to which the hydrogen is added. For fuel-rich premixed appliances, e.g., cooking burners, the maximum hydrogen admixture is seen to be limited by flashback, while loss of thermal input determines the maximum hydrogen fraction in modern lean-premixed appliances. The method is illustrated using a fictitious distribution band, but it can be applied to any regional or national situation. The method presented can be used to define efficient strategic roadmaps and provides essential knowledge for grid management assessments, aimed at introducing hydrogen into the natural gas infrastructure while maintaining performance for the end user.

Suggested Citation

  • de Vries, Harmen & Mokhov, Anatoli V. & Levinsky, Howard B., 2017. "The impact of natural gas/hydrogen mixtures on the performance of end-use equipment: Interchangeability analysis for domestic appliances," Applied Energy, Elsevier, vol. 208(C), pages 1007-1019.
  • Handle: RePEc:eee:appene:v:208:y:2017:i:c:p:1007-1019
    DOI: 10.1016/j.apenergy.2017.09.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917313302
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.09.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abeysekera, M. & Wu, J. & Jenkins, N. & Rees, M., 2016. "Steady state analysis of gas networks with distributed injection of alternative gas," Applied Energy, Elsevier, vol. 164(C), pages 991-1002.
    2. Guandalini, Giulio & Colbertaldo, Paolo & Campanari, Stefano, 2017. "Dynamic modeling of natural gas quality within transport pipelines in presence of hydrogen injections," Applied Energy, Elsevier, vol. 185(P2), pages 1712-1723.
    3. Pellegrino, Sandro & Lanzini, Andrea & Leone, Pierluigi, 2017. "Greening the gas network – The need for modelling the distributed injection of alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 266-286.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Badakhsh, Arash & Mothilal Bhagavathy, Sivapriya, 2024. "Caveats of green hydrogen for decarbonisation of heating in buildings," Applied Energy, Elsevier, vol. 353(PB).
    2. Wang, Tiantian & Liu, Xuemin & Zhang, Yang & Zhang, Hai, 2024. "Thermodynamic and emission characteristics of a hydrogen-enriched natural gas-fired boiler integrated with external flue gas recirculation and waste heat recovery," Applied Energy, Elsevier, vol. 358(C).
    3. Sandri, Orana & Holdsworth, Sarah & Wong, Peter S.P. & Hayes, Jan, 2024. "Upskilling plumber gasfitters for hydrogen: An empirical study using the Theory of Planned Behavior," Renewable Energy, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dancker, Jonte & Wolter, Martin, 2022. "A coupled transient gas flow calculation with a simultaneous calorific-value-gradient improved hydrogen tracking," Applied Energy, Elsevier, vol. 316(C).
    2. Szoplik, Jolanta & Stelmasińska, Paulina, 2019. "Analysis of gas network storage capacity for alternative fuels in Poland," Energy, Elsevier, vol. 172(C), pages 343-353.
    3. Deymi-Dashtebayaz, Mahdi & Ebrahimi-Moghadam, Amir & Pishbin, Seyyed Iman & Pourramezan, Mahdi, 2019. "Investigating the effect of hydrogen injection on natural gas thermo-physical properties with various compositions," Energy, Elsevier, vol. 167(C), pages 235-245.
    4. Chaczykowski, Maciej & Zarodkiewicz, Paweł, 2017. "Simulation of natural gas quality distribution for pipeline systems," Energy, Elsevier, vol. 134(C), pages 681-698.
    5. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    6. Romeo, Luis M. & Cavana, Marco & Bailera, Manuel & Leone, Pierluigi & Peña, Begoña & Lisbona, Pilar, 2022. "Non-stoichiometric methanation as strategy to overcome the limitations of green hydrogen injection into the natural gas grid," Applied Energy, Elsevier, vol. 309(C).
    7. Wei, Xintong & Qiu, Rui & Liang, Yongtu & Liao, Qi & Klemeš, Jiří Jaromír & Xue, Jinjun & Zhang, Haoran, 2022. "Roadmap to carbon emissions neutral industrial parks: Energy, economic and environmental analysis," Energy, Elsevier, vol. 238(PA).
    8. Enrico Vaccariello & Riccardo Trinchero & Igor S. Stievano & Pierluigi Leone, 2021. "A Statistical Assessment of Blending Hydrogen into Gas Networks," Energies, MDPI, vol. 14(16), pages 1-17, August.
    9. Von Wald, Gregory A. & Stanion, Austin J. & Rajagopal, Deepak & Brandt, Adam R., 2019. "Biomethane addition to California transmission pipelines: Regional simulation of the impact of regulations," Applied Energy, Elsevier, vol. 250(C), pages 292-301.
    10. Christina Ingo & Jessica Tuuf & Margareta Björklund-Sänkiaho, 2022. "Impact of Hydrogen on Natural Gas Compositions to Meet Engine Gas Quality Requirements," Energies, MDPI, vol. 15(21), pages 1-13, October.
    11. Danieli, Piero & Lazzaretto, Andrea & Al-Zaili, Jafar & Sayma, Abdulnaser & Masi, Massimo & Carraro, Gianluca, 2022. "The potential of the natural gas grid to accommodate hydrogen as an energy vector in transition towards a fully renewable energy system," Applied Energy, Elsevier, vol. 313(C).
    12. de Vries, Harmen & Levinsky, Howard B., 2020. "Flashback, burning velocities and hydrogen admixture: Domestic appliance approval, gas regulation and appliance development," Applied Energy, Elsevier, vol. 259(C).
    13. Bermúdez, Alfredo & Shabani, Mohsen, 2022. "Numerical simulation of gas composition tracking in a gas transportation network," Energy, Elsevier, vol. 247(C).
    14. Cavana, Marco & Mazza, Andrea & Chicco, Gianfranco & Leone, Pierluigi, 2021. "Electrical and gas networks coupling through hydrogen blending under increasing distributed photovoltaic generation," Applied Energy, Elsevier, vol. 290(C).
    15. Raheli, Enrica & Wu, Qiuwei & Zhang, Menglin & Wen, Changyun, 2021. "Optimal coordinated operation of integrated natural gas and electric power systems: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Yifei Lu & Thiemo Pesch & Andrea Benigni, 2021. "Simulation of Coupled Power and Gas Systems with Hydrogen-Enriched Natural Gas," Energies, MDPI, vol. 14(22), pages 1-17, November.
    17. Colbertaldo, P. & Cerniauskas, S. & Grube, T. & Robinius, M. & Stolten, D. & Campanari, S., 2020. "Clean mobility infrastructure and sector integration in long-term energy scenarios: The case of Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    18. Davis, M. & Okunlola, A. & Di Lullo, G. & Giwa, T. & Kumar, A., 2023. "Greenhouse gas reduction potential and cost-effectiveness of economy-wide hydrogen-natural gas blending for energy end uses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    19. Quarton, Christopher J. & Samsatli, Sheila, 2018. "Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 302-316.
    20. Gu, Chenghong & Tang, Can & Xiang, Yue & Xie, Da, 2019. "Power-to-gas management using robust optimisation in integrated energy systems," Applied Energy, Elsevier, vol. 236(C), pages 681-689.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:208:y:2017:i:c:p:1007-1019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.