IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3582-d815117.html
   My bibliography  Save this article

Hydrogen Blending in Gas Pipeline Networks—A Review

Author

Listed:
  • Devinder Mahajan

    (Department of Materials Science and Chemical Engineering, Stony Brook University and Institute of Gas Innovation and Technology, Advanced Energy Research and Technology Center, Stony Brook, NY 11794, USA)

  • Kun Tan

    (Department of Materials Science and Chemical Engineering, Stony Brook University and Institute of Gas Innovation and Technology, Advanced Energy Research and Technology Center, Stony Brook, NY 11794, USA)

  • T. Venkatesh

    (Department of Materials Science and Chemical Engineering, Stony Brook University and Institute of Gas Innovation and Technology, Advanced Energy Research and Technology Center, Stony Brook, NY 11794, USA)

  • Pradheep Kileti

    (Gas Asset Management and Engineering, National Grid, Melville, NY 11747, USA)

  • Clive R. Clayton

    (Department of Materials Science and Chemical Engineering, Stony Brook University and Institute of Gas Innovation and Technology, Advanced Energy Research and Technology Center, Stony Brook, NY 11794, USA)

Abstract

Replacing fossil fuels with non-carbon fuels is an important step towards reaching the ultimate goal of carbon neutrality. Instead of moving directly from the current natural gas energy systems to pure hydrogen, an incremental blending of hydrogen with natural gas could provide a seamless transition and minimize disruptions in power and heating source distribution to the public. Academic institutions, industry, and governments globally, are supporting research, development and deployment of hydrogen blending projects such as HyDeploy, GRHYD, THyGA, HyBlend, and others which are all seeking to develop efficient pathways to meet the carbon reduction goal in coming decades. There is an understanding that successful commercialization of hydrogen blending requires both scientific advances and favorable techno-economic analysis. Ongoing studies are focused on understanding how the properties of methane-hydrogen mixtures such as density, viscosity, phase interactions, and energy densities impact large-scale transportation via pipeline networks and end-use applications such as in modified engines, oven burners, boilers, stoves, and fuel cells. The advantages of hydrogen as a non-carbon energy carrier need to be balanced with safety concerns of blended gas during transport, such as overpressure and leakage in pipelines. While studies on the short-term hydrogen embrittlement effect have shown essentially no degradation in the metal tensile strength of pipelines, the long-term hydrogen embrittlement effect on pipelines is still the focus of research in other studies. Furthermore, pressure reduction is one of the drawbacks that hydrogen blending brings to the cost dynamics of blended gas transport. Hence, techno-economic models are also being developed to understand the energy transportation efficiency and to estimate the true cost of delivery of hydrogen blended natural gas as we move to decarbonize our energy systems. This review captures key large-scale efforts around the world that are designed to increase the confidence for a global transition to methane-hydrogen gas blends as a precursor to the adoption of a hydrogen economy by 2050.

Suggested Citation

  • Devinder Mahajan & Kun Tan & T. Venkatesh & Pradheep Kileti & Clive R. Clayton, 2022. "Hydrogen Blending in Gas Pipeline Networks—A Review," Energies, MDPI, vol. 15(10), pages 1-32, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3582-:d:815117
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3582/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3582/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abeysekera, M. & Wu, J. & Jenkins, N. & Rees, M., 2016. "Steady state analysis of gas networks with distributed injection of alternative gas," Applied Energy, Elsevier, vol. 164(C), pages 991-1002.
    2. Kothari, Richa & Buddhi, D. & Sawhney, R.L., 2008. "Comparison of environmental and economic aspects of various hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 553-563, February.
    3. Jörg Leicher & Johannes Schaffert & Hristina Cigarida & Eren Tali & Frank Burmeister & Anne Giese & Rolf Albus & Klaus Görner & Stéphane Carpentier & Patrick Milin & Jean Schweitzer, 2022. "The Impact of Hydrogen Admixture into Natural Gas on Residential and Commercial Gas Appliances," Energies, MDPI, vol. 15(3), pages 1-13, January.
    4. Mingmin Kong & Shuaiming Feng & Qi Xia & Chen Chen & Zhouxin Pan & Zengliang Gao, 2021. "Investigation of Mixing Behavior of Hydrogen Blended to Natural Gas in Gas Network," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    5. Cavana, Marco & Mazza, Andrea & Chicco, Gianfranco & Leone, Pierluigi, 2021. "Electrical and gas networks coupling through hydrogen blending under increasing distributed photovoltaic generation," Applied Energy, Elsevier, vol. 290(C).
    6. Wang, Guihua & Ogden, Joan M & Nicholas, Michael A, 2007. "Lifecycle impacts of natural gas to hydrogen pathways on urban air quality," Institute of Transportation Studies, Working Paper Series qt4fs2b9bv, Institute of Transportation Studies, UC Davis.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christina Ingo & Jessica Tuuf & Margareta Björklund-Sänkiaho, 2022. "Impact of Hydrogen on Natural Gas Compositions to Meet Engine Gas Quality Requirements," Energies, MDPI, vol. 15(21), pages 1-13, October.
    2. Mu, Lianbo & Wang, Suilin & Lu, Junhui & Li, Congna & Lan, Yuncheng & Liu, Guichang & Zhang, Tong, 2024. "Effect of hydrogen-enriched natural gas on flue gas waste heat recovery potential and condensing heat exchanger performance," Energy, Elsevier, vol. 286(C).
    3. Zhu, Yong-Qiang & Song, Wei & Wang, Han-Bing & Qi, Jian-Tao & Zeng, Rong-Chang & Ren, Hao & Jiang, Wen-Chun & Meng, Hui-Bo & Li, Yu-Xing, 2024. "Advances in reducing hydrogen effect of pipeline steels on hydrogen-blended natural gas transportation: A systematic review of mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    4. German Dominguez-Gonzalez & Jose Ignacio Muñoz-Hernandez & Derek Bunn & Carlos Jesus Garcia-Checa, 2022. "Integration of Hydrogen and Synthetic Natural Gas within Legacy Power Generation Facilities," Energies, MDPI, vol. 15(12), pages 1-27, June.
    5. Domagoj Talapko & Jasminka Talapko & Ivan Erić & Ivana Škrlec, 2023. "Biological Hydrogen Production from Biowaste Using Dark Fermentation, Storage and Transportation," Energies, MDPI, vol. 16(8), pages 1-16, April.
    6. Gharibvand, Hossein & Gharehpetian, G.B. & Anvari-Moghaddam, A., 2024. "A survey on microgrid flexibility resources, evaluation metrics and energy storage effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrian Neacsa & Cristian Nicolae Eparu & Cașen Panaitescu & Doru Bogdan Stoica & Bogdan Ionete & Alina Prundurel & Sorin Gal, 2023. "Hydrogen–Natural Gas Mix—A Viable Perspective for Environment and Society," Energies, MDPI, vol. 16(15), pages 1-38, August.
    2. Romeo, Luis M. & Cavana, Marco & Bailera, Manuel & Leone, Pierluigi & Peña, Begoña & Lisbona, Pilar, 2022. "Non-stoichiometric methanation as strategy to overcome the limitations of green hydrogen injection into the natural gas grid," Applied Energy, Elsevier, vol. 309(C).
    3. Wang, Sheng & Hui, Hongxun & Ding, Yi & Song, Yonghua, 2024. "Long-term reliability evaluation of integrated electricity and gas systems considering distributed hydrogen injections," Applied Energy, Elsevier, vol. 356(C).
    4. Enrico Vaccariello & Riccardo Trinchero & Igor S. Stievano & Pierluigi Leone, 2021. "A Statistical Assessment of Blending Hydrogen into Gas Networks," Energies, MDPI, vol. 14(16), pages 1-17, August.
    5. Christina Ingo & Jessica Tuuf & Margareta Björklund-Sänkiaho, 2022. "Impact of Hydrogen on Natural Gas Compositions to Meet Engine Gas Quality Requirements," Energies, MDPI, vol. 15(21), pages 1-13, October.
    6. Saedi, Isam & Mhanna, Sleiman & Mancarella, Pierluigi, 2021. "Integrated electricity and gas system modelling with hydrogen injections and gas composition tracking," Applied Energy, Elsevier, vol. 303(C).
    7. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    8. Kothari, Richa & Singh, D.P. & Tyagi, V.V. & Tyagi, S.K., 2012. "Fermentative hydrogen production – An alternative clean energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2337-2346.
    9. Tolga Balta, M. & Dincer, Ibrahim & Hepbasli, Arif, 2010. "Energy and exergy analyses of a new four-step copper–chlorine cycle for geothermal-based hydrogen production," Energy, Elsevier, vol. 35(8), pages 3263-3272.
    10. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    11. Balcombe, Paul & Speirs, Jamie & Johnson, Erin & Martin, Jeanne & Brandon, Nigel & Hawkes, Adam, 2018. "The carbon credentials of hydrogen gas networks and supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1077-1088.
    12. Chunyi Wang & Fengzhang Luo & Zheng Jiao & Xiaolei Zhang & Zhipeng Lu & Yanshuo Wang & Ren Zhao & Yang Yang, 2022. "An Enhanced Second-Order Cone Programming-Based Evaluation Method on Maximum Hosting Capacity of Solar Energy in Distribution Systems with Integrated Energy," Energies, MDPI, vol. 15(23), pages 1-19, November.
    13. Qiang Yue & Xicui Chai & Yujie Zhang & Qi Wang & Heming Wang & Feng Zhao & Wei Ji & Yuqi Lu, 2023. "Analysis of iron and steel production paths on the energy demand and carbon emission in China’s iron and steel industry," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4065-4085, May.
    14. Johannes Schaffert, 2022. "Progress in Power-to-Gas Energy Systems," Energies, MDPI, vol. 16(1), pages 1-9, December.
    15. Al-Qahtani, Amjad & Parkinson, Brett & Hellgardt, Klaus & Shah, Nilay & Guillen-Gosalbez, Gonzalo, 2021. "Uncovering the true cost of hydrogen production routes using life cycle monetisation," Applied Energy, Elsevier, vol. 281(C).
    16. Freida Ozavize Ayodele & Siti Indati Mustapa & Bamidele Victor Ayodele & Norsyahida Mohammad, 2020. "An Overview of Economic Analysis and Environmental Impacts of Natural Gas Conversion Technologies," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    17. Vadim Fetisov & Aleksey V. Shalygin & Svetlana A. Modestova & Vladimir K. Tyan & Changjin Shao, 2022. "Development of a Numerical Method for Calculating a Gas Supply System during a Period of Change in Thermal Loads," Energies, MDPI, vol. 16(1), pages 1-16, December.
    18. Lee, Timothy & Fu, Jintao & Basile, Victoria & Corsi, John S. & Wang, Zeyu & Detsi, Eric, 2020. "Activated alumina as value-added byproduct from the hydrolysis of hierarchical nanoporous aluminum with pure water to generate hydrogen fuel," Renewable Energy, Elsevier, vol. 155(C), pages 189-196.
    19. Jörg Leicher & Anne Giese & Christoph Wieland, 2024. "Electrification or Hydrogen? The Challenge of Decarbonizing Industrial (High-Temperature) Process Heat," J, MDPI, vol. 7(4), pages 1-18, October.
    20. Adrian Neacsa & Cristian Nicolae Eparu & Doru Bogdan Stoica, 2022. "Hydrogen–Natural Gas Blending in Distribution Systems—An Energy, Economic, and Environmental Assessment," Energies, MDPI, vol. 15(17), pages 1-26, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3582-:d:815117. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.