The Application of Machine Learning Methods to Predict the Power Output of Internal Combustion Engines
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Liu, Jinlong & Dumitrescu, Cosmin E., 2019. "Single and double Wiebe function combustion model for a heavy-duty diesel engine retrofitted to natural-gas spark-ignition," Applied Energy, Elsevier, vol. 248(C), pages 95-103.
- Liu, Jinlong & Huang, Qiao & Ulishney, Christopher & Dumitrescu, Cosmin E., 2021. "Machine learning assisted prediction of exhaust gas temperature of a heavy-duty natural gas spark ignition engine," Applied Energy, Elsevier, vol. 300(C).
- Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
- Fu-Kang Ma & Jun Wang & Yao-Nan Feng & Yan-Gang Zhang & Tie-Xiong Su & Yi Zhang & Yu-Hang Liu, 2017. "Parameter Optimization on the Uniflow Scavenging System of an OP2S-GDI Engine Based on Indicated Mean Effective Pressure (IMEP)," Energies, MDPI, vol. 10(3), pages 1-20, March.
- Yan, Ziming & Gainey, Brian & Gohn, James & Hariharan, Deivanayagam & Saputo, John & Schmidt, Carl & Caliari, Felipe & Sampath, Sanjay & Lawler, Benjamin, 2021. "A comprehensive experimental investigation of low-temperature combustion with thick thermal barrier coatings," Energy, Elsevier, vol. 222(C).
- Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ruslan V. Fedorov & Igor I. Shepelev & Mariia A. Malyoshina & Dmitry A. Generalov & Vyacheslav V. Sherkunov & Valeriy V. Sapunov, 2025. "Software Package for Optimization of Burner Devices on Dispersed Working Fluids," Energies, MDPI, vol. 18(4), pages 1-29, February.
- Hosseini, M. & Chitsaz, I., 2023. "Knock probability determination employing convolutional neural network and IGTD algorithm," Energy, Elsevier, vol. 284(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cesar de Lima Nogueira, Silvio & Och, Stephan Hennings & Moura, Luis Mauro & Domingues, Eric & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2023. "Prediction of the NOx and CO2 emissions from an experimental dual fuel engine using optimized random forest combined with feature engineering," Energy, Elsevier, vol. 280(C).
- Nikolaos Rizopoulos & Roussos Papagiannakis, 2025. "Comparative Evaluation of the Effect of Exhaust Gas Recirculation Usage on the Performance Characteristics and Emissions of a Natural Gas/Diesel Compression-Ignition Engine Operating at Part-Load Cond," Energies, MDPI, vol. 18(3), pages 1-31, February.
- Miguel Angel Ortíz-Barrios & Dayana Milena Coba-Blanco & Juan-José Alfaro-Saíz & Daniela Stand-González, 2021. "Process Improvement Approaches for Increasing the Response of Emergency Departments against the COVID-19 Pandemic: A Systematic Review," IJERPH, MDPI, vol. 18(16), pages 1-31, August.
- Zhang, Zhiqing & Dong, Rui & Tan, Dongli & Duan, Lin & Jiang, Feng & Yao, Xiaoxue & Yang, Dixin & Hu, Jingyi & Zhang, Jian & Zhong, Weihuang & Zhao, Ziheng, 2023. "Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis," Energy, Elsevier, vol. 271(C).
- Chen, Leiming & Xu, Zhaoping & Liu, Shuangshuang & Liu, Liang, 2022. "Dynamic modeling of a free-piston engine based on combustion parameters prediction," Energy, Elsevier, vol. 249(C).
- Chang, Mengzhao & Park, Suhan, 2023. "Predictions and analysis of flash boiling spray characteristics of gasoline direct injection injectors based on optimized machine learning algorithm," Energy, Elsevier, vol. 262(PA).
- Astorino, Annabella & Avolio, Matteo & Fuduli, Antonio, 2022. "A maximum-margin multisphere approach for binary Multiple Instance Learning," European Journal of Operational Research, Elsevier, vol. 299(2), pages 642-652.
- Zhou, Mengmeng & Wang, Shuai & Luo, Kun & Fan, Jianren, 2022. "Three-dimensional modeling study of the oxy-fuel co-firing of coal and biomass in a bubbling fluidized bed," Energy, Elsevier, vol. 247(C).
- Santiago Molina & Ricardo Novella & Josep Gomez-Soriano & Miguel Olcina-Girona, 2021. "New Combustion Modelling Approach for Methane-Hydrogen Fueled Engines Using Machine Learning and Engine Virtualization," Energies, MDPI, vol. 14(20), pages 1-21, October.
- Mateusz Zbikowski & Andrzej Teodorczyk, 2025. "Machine Learning for Internal Combustion Engine Optimization with Hydrogen-Blended Fuels: A Literature Review," Energies, MDPI, vol. 18(6), pages 1-20, March.
- Yuan, Chenheng & Peng, Shizhuo & Zhou, Lifu, 2023. "Multi-field coupling effect of injection on dynamics and thermodynamics of a linear combustion engine generator with slow compression and fast expansion," Energy, Elsevier, vol. 270(C).
- Benati, Stefano & Ponce, Diego & Puerto, Justo & Rodríguez-Chía, Antonio M., 2022. "A branch-and-price procedure for clustering data that are graph connected," European Journal of Operational Research, Elsevier, vol. 297(3), pages 817-830.
- Ma, Yinjie & Yang, Dong & Xie, Deyi & E, Jiaqiang, 2024. "Investigating the effect of fuel properties and environmental parameters on low-octane gasoline-like fuel spray combustion and emissions using machine learning-global sensitivity analysis method," Energy, Elsevier, vol. 306(C).
- Akhtar, Pervaiz & Ghouri, Arsalan Mujahid & Ashraf, Aniqa & Lim, Jia Jia & Khan, Naveed R & Ma, Shuang, 2024. "Smart product platforming powered by AI and generative AI: Personalization for the circular economy," International Journal of Production Economics, Elsevier, vol. 273(C).
- Ifaei, Pouya & Nazari-Heris, Morteza & Tayerani Charmchi, Amir Saman & Asadi, Somayeh & Yoo, ChangKyoo, 2023. "Sustainable energies and machine learning: An organized review of recent applications and challenges," Energy, Elsevier, vol. 266(C).
- Wu, Zheng & Zhang, Yue & Dong, Ze, 2024. "NOx concentration prediction based on multi-channel fused spectral temporal graph neural network in coal-fired power plants," Energy, Elsevier, vol. 305(C).
- Farhan, Muhammad & Chen, Tianhao & Rao, Anas & Shahid, Muhammad Ihsan & Xiao, Qiuhong & Liu, Yongzheng & Ma, Fanhua, 2024. "Performance, emissions and combustion analysis of hydrogen-enriched compressed natural gas spark ignition engine by optimized Gaussian process regression and neural network at low speed on different l," Energy, Elsevier, vol. 302(C).
- Pinyi Su & Muhammad Imran & Muhammad Nadeem & Shamsheer ul Haq, 2023. "The Role of Environmental Law in Farmers’ Environment-Protecting Intentions and Behavior Based on Their Legal Cognition: A Case Study of Jiangxi Province, China," Sustainability, MDPI, vol. 15(11), pages 1-22, May.
- Han, Zhezhe & Tang, Xiaoyu & Xie, Yue & Liang, Ruiyu & Bao, Yongqiang, 2024. "Prediction of heavy-oil combustion emissions with a semi-supervised learning model considering variable operation conditions," Energy, Elsevier, vol. 288(C).
- Alex G. Young & Aaron W. Costall & Daniel Coren & James W. G. Turner, 2021. "The Effect of Crankshaft Phasing and Port Timing Asymmetry on Opposed-Piston Engine Thermal Efficiency," Energies, MDPI, vol. 14(20), pages 1-20, October.
More about this item
Keywords
spark-ignition engine; machine learning; artificial neural network; support vector regression; random forest; indicated mean effective pressure;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3242-:d:804812. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.