IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v288y2021ics0306261921001860.html
   My bibliography  Save this article

Multi-layer wind velocity field visualization in infrared images of clouds for solar irradiance forecasting

Author

Listed:
  • Terrén-Serrano, Guillermo
  • Martínez-Ramón, Manel

Abstract

The energy available in a solar energy powered grid is uncertain due to the weather conditions at the time of generation. Forecasting global solar irradiance could address this problem by providing the power grid with the capability of scheduling the storage and dispatch of energy. The occlusion of the Sun by clouds is the main cause of instabilities in the generation of solar energy. This investigation proposes a method to visualize the wind velocity field in sequences of longwave infrared images of clouds when there are multiple wind velocity fields in an image. This method can be used to forecast the occlusion of the Sun by clouds, providing stability in the generation of solar energy. Unsupervised learning is implemented to infer the distribution of the clouds’ velocity vectors and heights in multiple wind velocity fields in an infrared image. A multi-output weighted support vector machine with flow constraints is used to extrapolate the wind velocity fields to the entire frame, visualizing the path of the clouds. The proposed method is capable of approximating the wind velocity field in a small air parcel using the velocity vectors and physical features of clouds extracted from infrared images. Assuming that the streamlines are pathlines, the visualization of the wind velocity field can be used for forecasting cloud occlusions of the Sun. This is of importance when considering ways of increasing the stability of solar energy generation.

Suggested Citation

  • Terrén-Serrano, Guillermo & Martínez-Ramón, Manel, 2021. "Multi-layer wind velocity field visualization in infrared images of clouds for solar irradiance forecasting," Applied Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:appene:v:288:y:2021:i:c:s0306261921001860
    DOI: 10.1016/j.apenergy.2021.116656
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921001860
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    2. Furlan, Claudia & de Oliveira, Amauri Pereira & Soares, Jacyra & Codato, Georgia & Escobedo, João Francisco, 2012. "The role of clouds in improving the regression model for hourly values of diffuse solar radiation," Applied Energy, Elsevier, vol. 92(C), pages 240-254.
    3. Cheng, Hsu-Yung, 2017. "Cloud tracking using clusters of feature points for accurate solar irradiance nowcasting," Renewable Energy, Elsevier, vol. 104(C), pages 281-289.
    4. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2015. "Assessment of direct normal irradiance and cloud connections using satellite data over Australia," Applied Energy, Elsevier, vol. 143(C), pages 301-311.
    5. Kong, Weicong & Jia, Youwei & Dong, Zhao Yang & Meng, Ke & Chai, Songjian, 2020. "Hybrid approaches based on deep whole-sky-image learning to photovoltaic generation forecasting," Applied Energy, Elsevier, vol. 280(C).
    6. Chou, Jui-Sheng & Truong, Ngoc-Son, 2019. "Cloud forecasting system for monitoring and alerting of energy use by home appliances," Applied Energy, Elsevier, vol. 249(C), pages 166-177.
    7. Jiang, Hou & Lu, Ning & Huang, Guanghui & Yao, Ling & Qin, Jun & Liu, Hengzi, 2020. "Spatial scale effects on retrieval accuracy of surface solar radiation using satellite data," Applied Energy, Elsevier, vol. 270(C).
    8. Crespi, Francesco & Toscani, Andrea & Zani, Paolo & Sánchez, David & Manzolini, Giampaolo, 2018. "Effect of passing clouds on the dynamic performance of a CSP tower receiver with molten salt heat storage," Applied Energy, Elsevier, vol. 229(C), pages 224-235.
    9. Lappalainen, Kari & Valkealahti, Seppo, 2017. "Output power variation of different PV array configurations during irradiance transitions caused by moving clouds," Applied Energy, Elsevier, vol. 190(C), pages 902-910.
    10. Chen, Xiaoyang & Du, Yang & Lim, Enggee & Wen, Huiqing & Yan, Ke & Kirtley, James, 2020. "Power ramp-rates of utility-scale PV systems under passing clouds: Module-level emulation with cloud shadow modeling," Applied Energy, Elsevier, vol. 268(C).
    11. Escrig, H. & Batlles, F.J. & Alonso, J. & Baena, F.M. & Bosch, J.L. & Salbidegoitia, I.B. & Burgaleta, J.I., 2013. "Cloud detection, classification and motion estimation using geostationary satellite imagery for cloud cover forecast," Energy, Elsevier, vol. 55(C), pages 853-859.
    12. Mateos, D. & Antón, M. & Valenzuela, A. & Cazorla, A. & Olmo, F.J. & Alados-Arboledas, L., 2014. "Efficiency of clouds on shortwave radiation using experimental data," Applied Energy, Elsevier, vol. 113(C), pages 1216-1219.
    13. Diagne, Maimouna & David, Mathieu & Lauret, Philippe & Boland, John & Schmutz, Nicolas, 2013. "Review of solar irradiance forecasting methods and a proposition for small-scale insular grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 65-76.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Linfei & Wu, Yunzhi, 2022. "Mode-decomposition memory reinforcement network strategy for smart generation control in multi-area power systems containing renewable energy," Applied Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Terrén-Serrano, Guillermo & Martínez-Ramón, Manel, 2021. "Comparative analysis of methods for cloud segmentation in ground-based infrared images," Renewable Energy, Elsevier, vol. 175(C), pages 1025-1040.
    2. Chen, Xiaoyang & Du, Yang & Lim, Enggee & Fang, Lurui & Yan, Ke, 2022. "Towards the applicability of solar nowcasting: A practice on predictive PV power ramp-rate control," Renewable Energy, Elsevier, vol. 195(C), pages 147-166.
    3. Qin, Jun & Jiang, Hou & Lu, Ning & Yao, Ling & Zhou, Chenghu, 2022. "Enhancing solar PV output forecast by integrating ground and satellite observations with deep learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Shitao Wang & Mingjian Sun & Yi Shen, 2022. "Semantic Segmentation Algorithm-Based Calculation of Cloud Shadow Trajectory and Cloud Speed," Energies, MDPI, vol. 15(23), pages 1-15, November.
    5. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    6. Wang, Zhenyu & Zhang, Yunpeng & Li, Guorong & Zhang, Jinlong & Zhou, Hai & Wu, Ji, 2024. "A novel solar irradiance forecasting method based on multi-physical process of atmosphere optics and LSTM-BP model," Renewable Energy, Elsevier, vol. 226(C).
    7. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    8. Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
    9. Elsinga, Boudewijn & van Sark, Wilfried G.J.H.M., 2017. "Short-term peer-to-peer solar forecasting in a network of photovoltaic systems," Applied Energy, Elsevier, vol. 206(C), pages 1464-1483.
    10. Saranchimeg, Sainbold & Nair, Nirmal K.C., 2021. "A novel framework for integration analysis of large-scale photovoltaic plants into weak grids," Applied Energy, Elsevier, vol. 282(PA).
    11. Da Liu & Kun Sun & Han Huang & Pingzhou Tang, 2018. "Monthly Load Forecasting Based on Economic Data by Decomposition Integration Theory," Sustainability, MDPI, vol. 10(9), pages 1-22, September.
    12. AlSkaif, Tarek & Dev, Soumyabrata & Visser, Lennard & Hossari, Murhaf & van Sark, Wilfried, 2020. "A systematic analysis of meteorological variables for PV output power estimation," Renewable Energy, Elsevier, vol. 153(C), pages 12-22.
    13. Ajith, Meenu & Martínez-Ramón, Manel, 2021. "Deep learning based solar radiation micro forecast by fusion of infrared cloud images and radiation data," Applied Energy, Elsevier, vol. 294(C).
    14. Marchesoni-Acland, Franco & Alonso-Suárez, Rodrigo, 2020. "Intra-day solar irradiation forecast using RLS filters and satellite images," Renewable Energy, Elsevier, vol. 161(C), pages 1140-1154.
    15. Pedregal, Diego J. & Trapero, Juan R., 2021. "Adjusted combination of moving averages: A forecasting system for medium-term solar irradiance," Applied Energy, Elsevier, vol. 298(C).
    16. Dasari, Hari Prasad & Desamsetti, Srinivas & Langodan, Sabique & Attada, Raju & Kunchala, Ravi Kumar & Viswanadhapalli, Yesubabu & Knio, Omar & Hoteit, Ibrahim, 2019. "High-resolution assessment of solar energy resources over the Arabian Peninsula," Applied Energy, Elsevier, vol. 248(C), pages 354-371.
    17. Gabriel Mendonça de Paiva & Sergio Pires Pimentel & Bernardo Pinheiro Alvarenga & Enes Gonçalves Marra & Marco Mussetta & Sonia Leva, 2020. "Multiple Site Intraday Solar Irradiance Forecasting by Machine Learning Algorithms: MGGP and MLP Neural Networks," Energies, MDPI, vol. 13(11), pages 1-28, June.
    18. Alonso-Suárez, R. & David, M. & Branco, V. & Lauret, P., 2020. "Intra-day solar probabilistic forecasts including local short-term variability and satellite information," Renewable Energy, Elsevier, vol. 158(C), pages 554-573.
    19. Yagli, Gokhan Mert & Yang, Dazhi & Gandhi, Oktoviano & Srinivasan, Dipti, 2020. "Can we justify producing univariate machine-learning forecasts with satellite-derived solar irradiance?," Applied Energy, Elsevier, vol. 259(C).
    20. Jean-Laurent Duchaud & Cyril Voyant & Alexis Fouilloy & Gilles Notton & Marie-Laure Nivet, 2020. "Trade-Off between Precision and Resolution of a Solar Power Forecasting Algorithm for Micro-Grid Optimal Control," Energies, MDPI, vol. 13(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:288:y:2021:i:c:s0306261921001860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.