IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v249y2019icp166-177.html
   My bibliography  Save this article

Cloud forecasting system for monitoring and alerting of energy use by home appliances

Author

Listed:
  • Chou, Jui-Sheng
  • Truong, Ngoc-Son

Abstract

Inrecentyears,energy information systems have had an important role in the operational optimization of intelligent buildings to provide such benefits as high efficiency, energy savings and smart services. Interest in the intelligent management of home energy consumption using data mining and time series analysis is increasing. Therefore, this work develops an efficient web-based energy information management system for the power consumption of home appliances that monitors the energy load of a home, analyzes its energy consumption based on machine learning, and then sends information to various stakeholders. It interacts with the end-user through energy dashboards and emails. The web-based system includes a novel hybrid artificial intelligence model to improve its prediction of energy usage. An automatic warning function is also developed to identify anomalous energy consumption in a home in real time. The cloud system automatically sends a message to the user's email whenever a warning is necessary. End-users of this system can use forecast information and anomalous data to enhance the efficiency of energy usage in their buildings especially during peak times by adjusting the operating schedule of their appliances and electrical equipment.

Suggested Citation

  • Chou, Jui-Sheng & Truong, Ngoc-Son, 2019. "Cloud forecasting system for monitoring and alerting of energy use by home appliances," Applied Energy, Elsevier, vol. 249(C), pages 166-177.
  • Handle: RePEc:eee:appene:v:249:y:2019:i:c:p:166-177
    DOI: 10.1016/j.apenergy.2019.04.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191930710X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.04.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arghira, Nicoleta & Hawarah, Lamis & Ploix, Stéphane & Jacomino, Mireille, 2012. "Prediction of appliances energy use in smart homes," Energy, Elsevier, vol. 48(1), pages 128-134.
    2. Usman, Ahmad & Shami, Sajjad Haider, 2013. "Evolution of Communication Technologies for Smart Grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 191-199.
    3. Effenberger, Frank & Hilbert, Andreas, 2016. "Towards an energy information system architecture description for industrial manufacturers: Decomposition & allocation view," Energy, Elsevier, vol. 112(C), pages 599-605.
    4. Li, Deng-Feng, 2011. "Linear programming approach to solve interval-valued matrix games," Omega, Elsevier, vol. 39(6), pages 655-666, December.
    5. Chou, Jui-Sheng & Ngo, Ngoc-Tri, 2016. "Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns," Applied Energy, Elsevier, vol. 177(C), pages 751-770.
    6. Fróes Lima, Carlos Alberto & Portillo Navas, José Ricardo, 2012. "Smart metering and systems to support a conscious use of water and electricity," Energy, Elsevier, vol. 45(1), pages 528-540.
    7. Doostizadeh, Meysam & Ghasemi, Hassan, 2012. "A day-ahead electricity pricing model based on smart metering and demand-side management," Energy, Elsevier, vol. 46(1), pages 221-230.
    8. Francisco, Abigail & Truong, Hanh & Khosrowpour, Ardalan & Taylor, John E. & Mohammadi, Neda, 2018. "Occupant perceptions of building information model-based energy visualizations in eco-feedback systems," Applied Energy, Elsevier, vol. 221(C), pages 220-228.
    9. Malik, Arif S. & Bouzguenda, Mounir, 2013. "Effects of smart grid technologies on capacity and energy savings – A case study of Oman," Energy, Elsevier, vol. 54(C), pages 365-371.
    10. Biswas, M.A. Rafe & Robinson, Melvin D. & Fumo, Nelson, 2016. "Prediction of residential building energy consumption: A neural network approach," Energy, Elsevier, vol. 117(P1), pages 84-92.
    11. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    12. Depuru, Soma Shekara Sreenadh Reddy & Wang, Lingfeng & Devabhaktuni, Vijay, 2011. "Smart meters for power grid: Challenges, issues, advantages and status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2736-2742, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Yuanyuan & Xie, Xiangmin & Wang, Qingyan & Zhang, Linghan & Li, Yahui & Jin, Zongshuai, 2020. "A bottom-up approach to evaluate the harmonics and power of home appliances in residential areas," Applied Energy, Elsevier, vol. 259(C).
    2. Wang, Zeyu & Liu, Jian & Zhang, Yuanxin & Yuan, Hongping & Zhang, Ruixue & Srinivasan, Ravi S., 2021. "Practical issues in implementing machine-learning models for building energy efficiency: Moving beyond obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Yamashita, Daniela Yassuda & Vechiu, Ionel & Gaubert, Jean-Paul, 2020. "A review of hierarchical control for building microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    4. Terrén-Serrano, Guillermo & Martínez-Ramón, Manel, 2021. "Multi-layer wind velocity field visualization in infrared images of clouds for solar irradiance forecasting," Applied Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yuanyuan & Xie, Xiangmin & Wang, Qingyan & Zhang, Linghan & Li, Yahui & Jin, Zongshuai, 2020. "A bottom-up approach to evaluate the harmonics and power of home appliances in residential areas," Applied Energy, Elsevier, vol. 259(C).
    2. Chou, Jui-Sheng & Gusti Ayu Novi Yutami, I, 2014. "Smart meter adoption and deployment strategy for residential buildings in Indonesia," Applied Energy, Elsevier, vol. 128(C), pages 336-349.
    3. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    4. Fadaeenejad, M. & Saberian, A.M. & Fadaee, Mohd. & Radzi, M.A.M. & Hizam, H. & AbKadir, M.Z.A., 2014. "The present and future of smart power grid in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 828-834.
    5. Amal A. Al-Shargabi & Abdulbasit Almhafdy & Dina M. Ibrahim & Manal Alghieth & Francisco Chiclana, 2021. "Tuning Deep Neural Networks for Predicting Energy Consumption in Arid Climate Based on Buildings Characteristics," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
    6. Haidar, Ahmed M.A. & Muttaqi, Kashem & Sutanto, Danny, 2015. "Smart Grid and its future perspectives in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1375-1389.
    7. K. Habibul Kabir & Shafquat Yasar Aurko & Md. Saifur Rahman, 2021. "Smart Power Management in OIC Countries: A Critical Overview Using SWOT-AHP and Hybrid MCDM Analysis," Energies, MDPI, vol. 14(20), pages 1-50, October.
    8. Erlinghagen, Sabine & Lichtensteiger, Bill & Markard, Jochen, 2015. "Smart meter communication standards in Europe – a comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1249-1262.
    9. Hong, Seung Ho & Kim, Se Hwan & Kim, Gi Myung & Kim, Hyung Lae, 2014. "Experimental evaluation of BZ-GW (BACnet-ZigBee smart grid gateway) for demand response in buildings," Energy, Elsevier, vol. 65(C), pages 62-70.
    10. Guillermo Ivan Pereira & Patrícia Pereira Silva & Deborah Soule, 2018. "Policy-adaptation for a smarter and more sustainable EU electricity distribution industry: a foresight analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 231-267, December.
    11. Colak, Ilhami & Sagiroglu, Seref & Fulli, Gianluca & Yesilbudak, Mehmet & Covrig, Catalin-Felix, 2016. "A survey on the critical issues in smart grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 396-405.
    12. Hong, Seung Ho & Yu, Mengmeng & Huang, Xuefei, 2015. "A real-time demand response algorithm for heterogeneous devices in buildings and homes," Energy, Elsevier, vol. 80(C), pages 123-132.
    13. Kabalci, Yasin, 2016. "A survey on smart metering and smart grid communication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 302-318.
    14. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
    15. Reddy, K.S. & Kumar, Madhusudan & Mallick, T.K. & Sharon, H. & Lokeswaran, S., 2014. "A review of Integration, Control, Communication and Metering (ICCM) of renewable energy based smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 180-192.
    16. Fathi, Soheil & Srinivasan, Ravi & Fenner, Andriel & Fathi, Sahand, 2020. "Machine learning applications in urban building energy performance forecasting: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    17. Fletcher, James & Malalasekera, Weeratunge, 2016. "Development of a user-friendly, low-cost home energy monitoring and recording system," Energy, Elsevier, vol. 111(C), pages 32-46.
    18. Batista, N.C. & Melício, R. & Matias, J.C.O. & Catalão, J.P.S., 2013. "Photovoltaic and wind energy systems monitoring and building/home energy management using ZigBee devices within a smart grid," Energy, Elsevier, vol. 49(C), pages 306-315.
    19. Köktürk, G. & Tokuç, A., 2017. "Vision for wind energy with a smart grid in Izmir," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 332-345.
    20. Yoldaş, Yeliz & Önen, Ahmet & Muyeen, S.M. & Vasilakos, Athanasios V. & Alan, İrfan, 2017. "Enhancing smart grid with microgrids: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 205-214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:249:y:2019:i:c:p:166-177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.