IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v145y2020icp2694-2706.html
   My bibliography  Save this article

Alternative operational strategies for wind turbines in cold climates

Author

Listed:
  • Stoyanov, D.B.
  • Nixon, J.D.

Abstract

Around a quarter of the global wind energy capacity is operating in cold climates, where ice accretion can damage wind turbines, cause safety concerns and reduce power output. In this paper, alternative operational strategies to reduce ice build-up and increase power output are studied. The alternative strategies are achieved by making tip-speed ratio (TSR) modifications both during and after an icing event. To compare different TSR strategies, the concept of an energy payback time is outlined, which is used to determine when an alternative strategy outperforms a turbine's normal design strategy. The method is demonstrated using the NREL 5 MW reference wind turbine for twelve different icing conditions, encompassing different temperatures, wind speeds, droplet diameters and liquid water contents. The results indicate that for short and severe icing events, an alternative TSR strategy will start producing more energy than a conventional design strategy within 0.5–2.5 h after icing and decrease ice accumulation by approximately 25–30% per blade. The method presented in this study will enable more effective operational control strategies to be deployed for minimising ice-induced power losses and ice accretion at wind farms located in cold climates.

Suggested Citation

  • Stoyanov, D.B. & Nixon, J.D., 2020. "Alternative operational strategies for wind turbines in cold climates," Renewable Energy, Elsevier, vol. 145(C), pages 2694-2706.
  • Handle: RePEc:eee:renene:v:145:y:2020:i:c:p:2694-2706
    DOI: 10.1016/j.renene.2019.08.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119312108
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.08.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stoyanov, D.B. & Nixon, J.D. & Sarlak, H., 2021. "Analysis of derating and anti-icing strategies for wind turbines in cold climates," Applied Energy, Elsevier, vol. 288(C).
    2. Hacıefendioğlu, Kemal & Başağa, Hasan Basri & Yavuz, Zafer & Karimi, Mohammad Tordi, 2022. "Intelligent ice detection on wind turbine blades using semantic segmentation and class activation map approaches based on deep learning method," Renewable Energy, Elsevier, vol. 182(C), pages 1-16.
    3. Gao, Linyue & Tao, Tao & Liu, Yongqian & Hu, Hui, 2021. "A field study of ice accretion and its effects on the power production of utility-scale wind turbines," Renewable Energy, Elsevier, vol. 167(C), pages 917-928.
    4. Yong Ma & Shan Ai & Lele Yang & Aiming Zhang & Sen Liu & Binghao Zhou, 2020. "Hydrodynamic Performance of a Pitching Float Wave Energy Converter," Energies, MDPI, vol. 13(7), pages 1-27, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:2694-2706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.