IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v285y2021ics0306261920317852.html
   My bibliography  Save this article

Numerical investigation on the performance and detection of an industrial-sized planar solid oxide fuel cell with fuel gas leakage

Author

Listed:
  • Tanaka, T.
  • Inui, Y.
  • Pongratz, G.
  • Subotić, V.
  • Hochenauer, C.

Abstract

The authors developed a simulation program for a single cell of industrial-sized planar solid oxide fuel cell (SOFC) with a scandia-ceria-stabilized-zirconia (10Sc1CeSZ) electrolyte fed with hydrogen fuel gas, to investigate its operating characteristics under fuel gas leakage conditions. Firstly, the numerical and corresponding experimental results were compared under conditions with no fuel gas leakage. The results confirmed the sufficient validity of the developed simulation program. Next, using the program, simulations involving fuel gas leakage on both sides of the SOFC were carried out. It was found that fuel gas leakage alters the stream of the fuel gas and induces a serious shortage of fuel gas in the downstream area of both side channels. This leads to a significant reduction in the local electromotive force and the appearance of regions where local electrolysis of water vapor occurs, in the downstream area on both sides. The effect of fuel gas leakage on the single cell voltage and the differential resistance was also investigated. It was revealed that the fuel gas leakage cannot be detected by only measuring the single cell voltage. On the other hand, the fuel gas leakage can be detected at an early stage, when only several percent of its inlet flow rate leaks, by measuring the differential resistance under a high fuel utilization rate condition of about 90 % and above. Based on this result, the authors proposed to employ the differential resistance, instead of the single cell voltage, as an evaluation index to detect the fuel gas leakage.

Suggested Citation

  • Tanaka, T. & Inui, Y. & Pongratz, G. & Subotić, V. & Hochenauer, C., 2021. "Numerical investigation on the performance and detection of an industrial-sized planar solid oxide fuel cell with fuel gas leakage," Applied Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:appene:v:285:y:2021:i:c:s0306261920317852
    DOI: 10.1016/j.apenergy.2020.116426
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920317852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.116426?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yan, Dong & Zhang, Chi & Liang, Linjiang & Li, Kai & Jia, Lichao & Pu, Jian & Jian, Li & Li, Xi & Zhang, Tao, 2016. "Degradation analysis and durability improvement for SOFC 1-cell stack," Applied Energy, Elsevier, vol. 175(C), pages 414-420.
    2. Li, Ang & Song, Ce & Lin, Zijing, 2017. "A multiphysics fully coupled modeling tool for the design and operation analysis of planar solid oxide fuel cell stacks," Applied Energy, Elsevier, vol. 190(C), pages 1234-1244.
    3. Cinti, G. & Bidini, G. & Hemmes, K., 2019. "Comparison of the solid oxide fuel cell system for micro CHP using natural gas with a system using a mixture of natural gas and hydrogen," Applied Energy, Elsevier, vol. 238(C), pages 69-77.
    4. Subotić, Vanja & Stoeckl, Bernhard & Lawlor, Vincent & Strasser, Johannes & Schroettner, Hartmuth & Hochenauer, Christoph, 2018. "Towards a practical tool for online monitoring of solid oxide fuel cell operation: An experimental study and application of advanced data analysis approaches," Applied Energy, Elsevier, vol. 222(C), pages 748-761.
    5. Wakui, Tetsuya & Yokoyama, Ryohei, 2012. "Optimal sizing of residential SOFC cogeneration system for power interchange operation in housing complex from energy-saving viewpoint," Energy, Elsevier, vol. 41(1), pages 65-74.
    6. Khazaee, I. & Rava, A., 2017. "Numerical simulation of the performance of solid oxide fuel cell with different flow channel geometries," Energy, Elsevier, vol. 119(C), pages 235-244.
    7. Dong, Sang-Keun & Jung, Woo-Nam & Rashid, Kashif & Kashimoto, Akiyoshi, 2016. "Design and numerical analysis of a planar anode-supported SOFC stack," Renewable Energy, Elsevier, vol. 94(C), pages 637-650.
    8. Antonucci, V. & Branchini, L. & Brunaccini, G. & De Pascale, A. & Ferraro, M. & Melino, F. & Orlandini, V. & Sergi, F., 2017. "Thermal integration of a SOFC power generator and a Na–NiCl2 battery for CHP domestic application," Applied Energy, Elsevier, vol. 185(P2), pages 1256-1267.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Bohan & Wang, Chaoyang & Liu, Ming & Fan, Jianlin & Yan, Junjie, 2023. "Transient performance analysis of a solid oxide fuel cell during power regulations with different control strategies based on a 3D dynamic model," Renewable Energy, Elsevier, vol. 218(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gong, Chengyuan & Tu, Zhengkai & Hwa Chan, Siew, 2023. "A novel flow field design with flow re-distribution for advanced thermal management in Solid oxide fuel cell," Applied Energy, Elsevier, vol. 331(C).
    2. Zarabi Golkhatmi, Sanaz & Asghar, Muhammad Imran & Lund, Peter D., 2022. "A review on solid oxide fuel cell durability: Latest progress, mechanisms, and study tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Li, Haolong & Wei, Wei & Liu, Fengxia & Xu, Xiaofei & Li, Zhiyi & Liu, Zhijun, 2023. "Identification of internal polarization dynamics for solid oxide fuel cells investigated by electrochemical impedance spectroscopy and distribution of relaxation times," Energy, Elsevier, vol. 267(C).
    4. Cuneo, A. & Zaccaria, V. & Tucker, D. & Sorce, A., 2018. "Gas turbine size optimization in a hybrid system considering SOFC degradation," Applied Energy, Elsevier, vol. 230(C), pages 855-864.
    5. Wu, Xiao-long & Xu, Yuan-Wu & Xue, Tao & Zhao, Dong-qi & Jiang, Jianhua & Deng, Zhonghua & Fu, Xiaowei & Li, Xi, 2019. "Health state prediction and analysis of SOFC system based on the data-driven entire stage experiment," Applied Energy, Elsevier, vol. 248(C), pages 126-140.
    6. Zeng, Zezhi & Qian, Yuping & Zhang, Yangjun & Hao, Changkun & Dan, Dan & Zhuge, Weilin, 2020. "A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks," Applied Energy, Elsevier, vol. 280(C).
    7. Xiao-Long Wu & Hong Zhang & Hongli Liu & Yuan-Wu Xu & Jingxuan Peng & Zhiping Xia & Yongan Wang, 2022. "Modeling Analysis of SOFC System Oriented to Working Condition Identification," Energies, MDPI, vol. 15(5), pages 1-19, February.
    8. Fang, Xiurong & Lin, Zijing, 2018. "Numerical study on the mechanical stress and mechanical failure of planar solid oxide fuel cell," Applied Energy, Elsevier, vol. 229(C), pages 63-68.
    9. Polverino, Pierpaolo & Sorrentino, Marco & Pianese, Cesare, 2017. "A model-based diagnostic technique to enhance faults isolability in Solid Oxide Fuel Cell systems," Applied Energy, Elsevier, vol. 204(C), pages 1198-1214.
    10. Karol K. Śreniawski & Maciej Chalusiak & Marcin Moździerz & Janusz S. Szmyd & Grzegorz Brus, 2023. "Transport Phenomena in a Banded Solid Oxide Fuel Cell Stack—Part 1: Model and Validation," Energies, MDPI, vol. 16(11), pages 1-25, June.
    11. Guk, Erdogan & Venkatesan, Vijay & Babar, Shumaila & Jackson, Lisa & Kim, Jung-Sik, 2019. "Parameters and their impacts on the temperature distribution and thermal gradient of solid oxide fuel cell," Applied Energy, Elsevier, vol. 241(C), pages 164-173.
    12. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    13. Petrone, Giovanni & Zamboni, Walter & Spagnuolo, Giovanni, 2019. "An interval arithmetic-based method for parametric identification of a fuel cell equivalent circuit model," Applied Energy, Elsevier, vol. 242(C), pages 1226-1236.
    14. Pedram Asef & Marzia Milan & Andrew Lapthorn & Sanjeevikumar Padmanaban, 2021. "Future Trends and Aging Analysis of Battery Energy Storage Systems for Electric Vehicles," Sustainability, MDPI, vol. 13(24), pages 1-28, December.
    15. Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
    16. Amiri, Hamed & Sotoodeh, Amir Farhang & Amidpour, Majid, 2021. "A new combined heating and power system driven by biomass for total-site utility applications," Renewable Energy, Elsevier, vol. 163(C), pages 1138-1152.
    17. Mei, Shuxue & Lu, Xiaorui & Zhu, Yu & Wang, Shixue, 2021. "Thermodynamic assessment of a system configuration strategy for a cogeneration system combining SOFC, thermoelectric generator, and absorption heat pump," Applied Energy, Elsevier, vol. 302(C).
    18. Gimelli, A. & Mottola, F. & Muccillo, M. & Proto, D. & Amoresano, A. & Andreotti, A. & Langella, G., 2019. "Optimal configuration of modular cogeneration plants integrated by a battery energy storage system providing peak shaving service," Applied Energy, Elsevier, vol. 242(C), pages 974-993.
    19. Ramadhani, F. & Hussain, M.A. & Mokhlis, H. & Hajimolana, S., 2017. "Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 460-484.
    20. Zhen Zhang & Chengzhi Guan & Leidong Xie & Jian-Qiang Wang, 2022. "Design and Analysis of a Novel Opposite Trapezoidal Flow Channel for Solid Oxide Electrolysis Cell Stack," Energies, MDPI, vol. 16(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:285:y:2021:i:c:s0306261920317852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.