IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v218y2023ics0960148123011813.html
   My bibliography  Save this article

Transient performance analysis of a solid oxide fuel cell during power regulations with different control strategies based on a 3D dynamic model

Author

Listed:
  • Li, Bohan
  • Wang, Chaoyang
  • Liu, Ming
  • Fan, Jianlin
  • Yan, Junjie

Abstract

Solid oxide fuel cell (SOFC) is a promising power technology, which has the attributes of clean, high efficiency, and high flexibility. In this research, a 3D-dynamic model of a planar SOFC was established and experimentally verified. Based on the developed model, the dynamic response characteristics of SOFC are investigated after every step change in the inlet gas temperature, inlet gas flow, and output voltage. For the output voltage of 0.9V, 0.7V, and 0.6V, the power density varies by +13.6%/-16.7%, +11.0%/-15.3%, and +5.1%/-9.7%, respectively, against every increase/decrease the inlet gas temperature by 100 K. The response processes of the power density to the changes in both inlet gas flow and output voltage are divided into fast-response and slow-response stages. The power density changes in these two stages can be attributed to the change in reactant concentration within the functional layers (fast-response stage) and the slow evolution of cell temperature (slow-response stage), respectively. Subsequently, four control strategies are employed to increase/decrease the power density by 20%. The comparative results show that the integrated control strategy of changing multiple operating parameters simultaneously can reduce the change range of a single controlled parameter, thereby improving the power regulating capability and increasing the regulating speed.

Suggested Citation

  • Li, Bohan & Wang, Chaoyang & Liu, Ming & Fan, Jianlin & Yan, Junjie, 2023. "Transient performance analysis of a solid oxide fuel cell during power regulations with different control strategies based on a 3D dynamic model," Renewable Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123011813
    DOI: 10.1016/j.renene.2023.119266
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123011813
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119266?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nassef, Ahmed M. & Fathy, Ahmed & Sayed, Enas Taha & Abdelkareem, Mohammad Ali & Rezk, Hegazy & Tanveer, Waqas Hassan & Olabi, A.G., 2019. "Maximizing SOFC performance through optimal parameters identification by modern optimization algorithms," Renewable Energy, Elsevier, vol. 138(C), pages 458-464.
    2. Jiang, Zhiqiang & Liao, Mingzheng & Qi, Ji & Wang, Chao & Chen, Ying & Luo, Xianglong & Liang, Bo & Shu, Riyang & Song, Qingbin, 2020. "Enhancing hydrogen production from propane partial oxidation via CO preferential oxidation and CO2 sorption towards solid oxide fuel cell (SOFC) applications," Renewable Energy, Elsevier, vol. 156(C), pages 303-313.
    3. Saadabadi, S. Ali & Thallam Thattai, Aditya & Fan, Liyuan & Lindeboom, Ralph E.F. & Spanjers, Henri & Aravind, P.V., 2019. "Solid Oxide Fuel Cells fuelled with biogas: Potential and constraints," Renewable Energy, Elsevier, vol. 134(C), pages 194-214.
    4. Zeng, Zezhi & Qian, Yuping & Zhang, Yangjun & Hao, Changkun & Dan, Dan & Zhuge, Weilin, 2020. "A review of heat transfer and thermal management methods for temperature gradient reduction in solid oxide fuel cell (SOFC) stacks," Applied Energy, Elsevier, vol. 280(C).
    5. Nestor A. Sepulveda & Jesse D. Jenkins & Aurora Edington & Dharik S. Mallapragada & Richard K. Lester, 2021. "The design space for long-duration energy storage in decarbonized power systems," Nature Energy, Nature, vol. 6(5), pages 506-516, May.
    6. Wang, Chaoyang & Chen, Ming & Liu, Ming & Yan, Junjie, 2020. "Dynamic modeling and parameter analysis study on reversible solid oxide cells during mode switching transient processes," Applied Energy, Elsevier, vol. 263(C).
    7. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    8. Nerat, Marko, 2017. "Modeling and analysis of short-period transient response of a single, planar, anode supported, solid oxide fuel cell during load variations," Energy, Elsevier, vol. 138(C), pages 728-738.
    9. Olabi, A.G. & Onumaegbu, C. & Wilberforce, Tabbi & Ramadan, Mohamad & Abdelkareem, Mohammad Ali & Al – Alami, Abdul Hai, 2021. "Critical review of energy storage systems," Energy, Elsevier, vol. 214(C).
    10. Davis, Steven J & Lewis, Nathan S. & Shaner, Matthew & Aggarwal, Sonia & Arent, Doug & Azevedo, Inês & Benson, Sally & Bradley, Thomas & Brouwer, Jack & Chiang, Yet-Ming & Clack, Christopher T.M. & Co, 2018. "Net-Zero Emissions Energy Systems," Institute of Transportation Studies, Working Paper Series qt7qv6q35r, Institute of Transportation Studies, UC Davis.
    11. Tanaka, T. & Inui, Y. & Pongratz, G. & Subotić, V. & Hochenauer, C., 2021. "Numerical investigation on the performance and detection of an industrial-sized planar solid oxide fuel cell with fuel gas leakage," Applied Energy, Elsevier, vol. 285(C).
    12. Aleh Cherp & Vadim Vinichenko & Jale Tosun & Joel A. Gordon & Jessica Jewell, 2021. "National growth dynamics of wind and solar power compared to the growth required for global climate targets," Nature Energy, Nature, vol. 6(7), pages 742-754, July.
    13. Xia, Zhiping & Zhao, Dongqi & Li, Yuanzheng & Deng, Zhonghua & Kupecki, Jakub & Fu, Xiaowei & Li, Xi, 2023. "Control-oriented dynamic process optimization of solid oxide electrolysis cell system with the gas characteristic regarding oxygen electrode delamination," Applied Energy, Elsevier, vol. 332(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Zefeng & Wang, Chaoyang & Fan, Jianlin & Liu, Ming & Xing, Yong & Yan, Junjie, 2024. "Enhancing the flexibility and stability of coal-fired power plants by optimizing control schemes of throttling high-pressure extraction steam," Energy, Elsevier, vol. 288(C).
    2. Dongsheng Zheng & Dan Tong & Steven J. Davis & Yue Qin & Yang Liu & Ruochong Xu & Jin Yang & Xizhe Yan & Guannan Geng & Huizheng Che & Qiang Zhang, 2024. "Climate change impacts on the extreme power shortage events of wind-solar supply systems worldwide during 1980–2022," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Dan Tong & David J. Farnham & Lei Duan & Qiang Zhang & Nathan S. Lewis & Ken Caldeira & Steven J. Davis, 2021. "Geophysical constraints on the reliability of solar and wind power worldwide," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Xia, Zhiping & Zhao, Dongqi & Li, Yuanzheng & Deng, Zhonghua & Kupecki, Jakub & Fu, Xiaowei & Li, Xi, 2023. "Control-oriented dynamic process optimization of solid oxide electrolysis cell system with the gas characteristic regarding oxygen electrode delamination," Applied Energy, Elsevier, vol. 332(C).
    5. Gunther Glenk & Stefan Reichelstein, 2022. "Reversible Power-to-Gas systems for energy conversion and storage," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Jieran Feng & Hao Zhou, 2022. "Bi-Level Optimal Capacity Planning of Load-Side Electric Energy Storage Using an Emission-Considered Carbon Incentive Mechanism," Energies, MDPI, vol. 15(13), pages 1-18, June.
    7. Gilmore, Nicholas & Koskinen, Ilpo & van Gennip, Domenique & Paget, Greta & Burr, Patrick A. & Obbard, Edward G. & Daiyan, Rahman & Sproul, Alistair & Kay, Merlinde & Lennon, Alison & Konstantinou, Ge, 2022. "Clean energy futures: An Australian based foresight study," Energy, Elsevier, vol. 260(C).
    8. Francesco Calise & Francesco Liberato Cappiello & Luca Cimmino & Massimo Dentice d’Accadia & Maria Vicidomini, 2021. "Dynamic Simulation and Thermoeconomic Analysis of a Hybrid Renewable System Based on PV and Fuel Cell Coupled with Hydrogen Storage," Energies, MDPI, vol. 14(22), pages 1-20, November.
    9. Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
    10. Yong, Qingqing & Jin, Kaiyuan & Li, Xiaobo & Yang, Ronggui, 2023. "Thermo-economic analysis for a novel grid-scale pumped thermal electricity storage system coupled with a coal-fired power plant," Energy, Elsevier, vol. 280(C).
    11. Lamorlette, A., 2023. "A coupled model of global energy production and ERoEI applied to photovoltaic and wind, an estimation of net production," Energy, Elsevier, vol. 278(PB).
    12. Gulam Smdani & Muhammad Remanul Islam & Ahmad Naim Ahmad Yahaya & Sairul Izwan Bin Safie, 2023. "Performance Evaluation Of Advanced Energy Storage Systems: A Review," Energy & Environment, , vol. 34(4), pages 1094-1141, June.
    13. Shan, Rui & Reagan, Jeremiah & Castellanos, Sergio & Kurtz, Sarah & Kittner, Noah, 2022. "Evaluating emerging long-duration energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    14. Wang, Chen & He, Qijiao & Li, Zheng & Yu, Jie & Bello, Idris Temitope & Zheng, Keqing & Han, Minfang & Ni, Meng, 2024. "A novel in-tube reformer for solid oxide fuel cell for performance improvement and efficient thermal management: A numerical study based on artificial neural network and genetic algorithm," Applied Energy, Elsevier, vol. 357(C).
    15. Aditya Sinha & Aranya Venkatesh & Katherine Jordan & Cameron Wade & Hadi Eshraghi & Anderson R. Queiroz & Paulina Jaramillo & Jeremiah X. Johnson, 2024. "Diverse decarbonization pathways under near cost-optimal futures," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Fang, Yan Ru & Peng, Wei & Urpelainen, Johannes & Hossain, M.S. & Qin, Yue & Ma, Teng & Ren, Ming & Liu, Xiaorui & Zhang, Silu & Huang, Chen & Dai, Hancheng, 2023. "Neutralizing China's transportation sector requires combined decarbonization efforts from power and hydrogen supply," Applied Energy, Elsevier, vol. 349(C).
    17. Bistline, John & Blanford, Geoffrey & Mai, Trieu & Merrick, James, 2021. "Modeling variable renewable energy and storage in the power sector," Energy Policy, Elsevier, vol. 156(C).
    18. Pham, An T. & Lovdal, Larson & Zhang, Tianyi & Craig, Michael T., 2022. "A techno-economic analysis of distributed energy resources versus wholesale electricity purchases for fueling decarbonized heavy duty vehicles," Applied Energy, Elsevier, vol. 322(C).
    19. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    20. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123011813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.