IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i10p3532-3540.html
   My bibliography  Save this article

The scientometric evaluation of the research on the algae and bio-energy

Author

Listed:
  • Konur, Ozcan

Abstract

The present study explores the characteristics of the literature on the algae and bio-energy published during the last three decades, based on the database of Science Citation Index-Expanded (SCIE) and Social Sciences Citation Index (SSCI) and its implications using the scientometric techniques. The results of this work reveal that the literature on the algae and bio-energy has grown exponentially during this period reaching 717papers in total. Most of document type is in the form of journal articles, reviews, and proceedings, constituting 98% of the total literature and English is the predominant language (97.6%). USA, China, Germany, and England are the four biggest contributing countries on the algae and bio-energy literature publishing, 26%, 8%, 8%, and 8% of the sample, respectively. The Chinese Academy of Sciences is the largest institutional contributor publishing 2.6% of the papers. The most publishing four authors are Wilhelm (13 papers) followed by Wu (15 papers), Mimuro (10 papers), and Zhao (9 papers). “Bioresource Technology” is the most publishing journal with 24 published papers, followed by “Journal of Applied Phycology” (17 papers), and “Biotechnology and Bioengineering” (15 papers). “Biotechnology & Applied Microbiology” is the subject area with 24.3% of the sample published. This is followed by “Energy & Fuels” (16.3%), “Marine & Freshwater Biology” (14.2%), and “Environmental Sciences” (12.3%). The total number of citations is 11,079, giving a ratio for the “Average Citations per Item” as 15.45 and “H-index” as 52. A list of most-cited 25authors is produced and Chisti (2007) receives 320 citations with 80 total average citations per year. This paper is followed by Lewis and Nocera (2006; 296 citations), Demirbas (2001; 187 citations). Chisti (2007) has the highest impact on the literature on the algae and energy with total average citations per year of 80. This is followed by Lewis and Nocera (2006, 59.8 annual citations) and Chisti (2008, 41 annual citations). An analysis of the citing papers shows the impact of the research on the algae and bio-energy for the related academic disciplines. This provides further incentives for all the stakeholders of the research on the algae and energy, but especially for the researchers and their institutions and their countries to do more research in this area. The results of this first ever such study of its kind show that the scientometric analysis has a great potential to gain valuable insights into the evolution of the research the on algae and bio-energy as in the case of new emerging technologies and processes such as nanoscience and nanotechnology complementing literature reviews, content analysis and metaanalysis research techniques.

Suggested Citation

  • Konur, Ozcan, 2011. "The scientometric evaluation of the research on the algae and bio-energy," Applied Energy, Elsevier, vol. 88(10), pages 3532-3540.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:10:p:3532-3540
    DOI: 10.1016/j.apenergy.2010.12.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261910005799
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2010.12.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Phalan, Ben, 2009. "The social and environmental impacts of biofuels in Asia: An overview," Applied Energy, Elsevier, vol. 86(Supplemen), pages 21-29, November.
    2. Kenneth Gillingham & Richard G. Newell & Karen Palmer, 2009. "Energy Efficiency Economics and Policy," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 597-620, September.
    3. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    4. Jean-Marc Bourgeon & David Tréguer, 2010. "Killing two birds with one stone: US and EU biofuel programmes," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 37(3), pages 369-394, September.
    5. Demirbas, Ayhan, 2011. "Competitive liquid biofuels from biomass," Applied Energy, Elsevier, vol. 88(1), pages 17-28, January.
    6. Kolbe, Richard H & Burnett, Melissa S, 1991. "Content-Analysis Research: An Examination of Applications with Directives for Improving Research Reliability and Objectivity," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 18(2), pages 243-250, September.
    7. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    8. Christian Wild & Markus Huettel & Anke Klueter & Stephan G. Kremb & Mohammed Y. M. Rasheed & Bo B. Jørgensen, 2004. "Coral mucus functions as an energy carrier and particle trap in the reef ecosystem," Nature, Nature, vol. 428(6978), pages 66-70, March.
    9. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    10. Edit Csajbók & Anna Berhidi & Lívia Vasas & András Schubert, 2007. "Hirsch-index for countries based on Essential Science Indicators data," Scientometrics, Springer;Akadémiai Kiadó, vol. 73(1), pages 91-117, October.
    11. Huang, GuanHua & Chen, Feng & Wei, Dong & Zhang, XueWu & Chen, Gu, 2010. "Biodiesel production by microalgal biotechnology," Applied Energy, Elsevier, vol. 87(1), pages 38-46, January.
    12. Alonso, S. & Cabrerizo, F.J. & Herrera-Viedma, E. & Herrera, F., 2009. "h-Index: A review focused in its variants, computation and standardization for different scientific fields," Journal of Informetrics, Elsevier, vol. 3(4), pages 273-289.
    13. Uzun, Ali, 2002. "National patterns of research output and priorities in renewable energy," Energy Policy, Elsevier, vol. 30(2), pages 131-136, January.
    14. Gao, Chunfang & Zhai, Yan & Ding, Yi & Wu, Qingyu, 2010. "Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides," Applied Energy, Elsevier, vol. 87(3), pages 756-761, March.
    15. Meng, Xin & Yang, Jianming & Xu, Xin & Zhang, Lei & Nie, Qingjuan & Xian, Mo, 2009. "Biodiesel production from oleaginous microorganisms," Renewable Energy, Elsevier, vol. 34(1), pages 1-5.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kiriyama, Eriko & Kajikawa, Yuya, 2014. "A multilayered analysis of energy security research and the energy supply process," Applied Energy, Elsevier, vol. 123(C), pages 415-423.
    2. Frigon, Jean-Claude & Matteau-Lebrun, Frédérique & Hamani Abdou, Rekia & McGinn, Patrick J. & O’Leary, Stephen J.B. & Guiot, Serge R., 2013. "Screening microalgae strains for their productivity in methane following anaerobic digestion," Applied Energy, Elsevier, vol. 108(C), pages 100-107.
    3. Yi Zhang & Mingting Kou & Kaihua Chen & Jiancheng Guan & Yuchen Li, 2016. "Modelling the Basic Research Competitiveness Index (BR-CI) with an application to the biomass energy field," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(3), pages 1221-1241, September.
    4. Imran, Muhammad & Haglind, Fredrik & Asim, Muhammad & Zeb Alvi, Jahan, 2018. "Recent research trends in organic Rankine cycle technology: A bibliometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 552-562.
    5. Arumugam, A. & Ponnusami, V., 2019. "Biodiesel production from Calophyllum inophyllum oil a potential non-edible feedstock: An overview," Renewable Energy, Elsevier, vol. 131(C), pages 459-471.
    6. Weishu Liu & Mengdi Gu & Guangyuan Hu & Chao Li & Huchang Liao & Li Tang & Philip Shapira, 2014. "Profile of developments in biomass-based bioenergy research: a 20-year perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 99(2), pages 507-521, May.
    7. Kiriyama, Eriko & Kajikawa, Yuya & Fujita, Katsuhide & Iwata, Shuichi, 2013. "A lead for transvaluation of global nuclear energy research and funded projects in Japan," Applied Energy, Elsevier, vol. 109(C), pages 145-153.
    8. Wang, Ming-Yeu & Fang, Shih-Chieh & Chang, Yu-Hsuan, 2015. "Exploring technological opportunities by mining the gaps between science and technology: Microalgal biofuels," Technological Forecasting and Social Change, Elsevier, vol. 92(C), pages 182-195.
    9. Giostri, A. & Binotti, M. & Macchi, E., 2016. "Microalgae cofiring in coal power plants: Innovative system layout and energy analysis," Renewable Energy, Elsevier, vol. 95(C), pages 449-464.
    10. Zhang, Yanting & Fan, Xiaolei & Yang, Zhiman & Wang, Huanyu & Yang, Dawei & Guo, Rongbo, 2012. "Characterization of H2 photoproduction by a new marine green alga, Platymonas helgolandica var. tsingtaoensis," Applied Energy, Elsevier, vol. 92(C), pages 38-43.
    11. Yan, Yunjun & Li, Xiang & Wang, Guilong & Gui, Xiaohua & Li, Guanlin & Su, Feng & Wang, Xiaofeng & Liu, Tao, 2014. "Biotechnological preparation of biodiesel and its high-valued derivatives: A review," Applied Energy, Elsevier, vol. 113(C), pages 1614-1631.
    12. Jayshree Mamtora & Jacqueline K. Wolstenholme & Gaby Haddow, 2014. "Environmental sciences research in northern Australia, 2000–2011: a bibliometric analysis within the context of a national research assessment exercise," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(1), pages 265-281, January.
    13. Lyu, Peng-hui & Ngai, Eric W.T. & Wu, Pei-yi, 2019. "Scientific data-driven evaluation on academic articles of low-carbon economy," Energy Policy, Elsevier, vol. 125(C), pages 358-367.
    14. Hong-Hua Qiu & Lu-Ge Liu, 2018. "A Study on the Evolution of Carbon Capture and Storage Technology Based on Knowledge Mapping," Energies, MDPI, vol. 11(5), pages 1-25, May.
    15. Lin, Boqiang & Su, Tong, 2020. "Mapping the oil price-stock market nexus researches: A scientometric review," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 133-147.
    16. Luiz Gustavo Antonio Souza & Márcia Azanha Ferraz Dias Moraes & Maria Ester Soares Dal Poz & José Maria Ferreira Jardim Silveira, 2015. "Collaborative Networks as a measure of the Innovation Systems in second-generation ethanol," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(2), pages 355-372, May.
    17. Muhammad Farooq & Muhammad Asim & Muhammad Imran & Shahid Imran & Jameel Ahmad & Muhammad Rizwan Younis, 2018. "Mapping past, current and future energy research trend in Pakistan: a scientometric assessment," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(3), pages 1733-1753, December.
    18. Zhu, Liandong, 2015. "Biorefinery as a promising approach to promote microalgae industry: An innovative framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1376-1384.
    19. Xu, Ben & Li, Peiwen & Waller, Peter, 2014. "Study of the flow mixing in a novel ARID raceway for algae production," Renewable Energy, Elsevier, vol. 62(C), pages 249-257.
    20. Chong-Chen Wang & Yuh-Shan Ho, 2016. "Research trend of metal–organic frameworks: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(1), pages 481-513, October.
    21. Zhu, Liandong & Hiltunen, Erkki & Shu, Qing & Zhou, Weizheng & Li, Zhaohua & Wang, Zhongming, 2014. "Biodiesel production from algae cultivated in winter with artificial wastewater through pH regulation by acetic acid," Applied Energy, Elsevier, vol. 128(C), pages 103-110.
    22. Judith Rumin & Raimundo Gonçalves de Oliveira Junior & Jean-Baptiste Bérard & Laurent Picot, 2021. "Improving Microalgae Research and Marketing in the European Atlantic Area: Analysis of Major Gaps and Barriers Limiting Sector Development," Post-Print hal-03277815, HAL.
    23. Montoya, Francisco G. & Montoya, Maria G. & Gómez, Julio & Manzano-Agugliaro, Francisco & Alameda-Hernández, Enrique, 2014. "The research on energy in spain: A scientometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 173-183.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demirbas, M. Fatih, 2011. "Biofuels from algae for sustainable development," Applied Energy, Elsevier, vol. 88(10), pages 3473-3480.
    2. Chen, Chunxiang & Ma, Xiaoqian & Liu, Kai, 2011. "Thermogravimetric analysis of microalgae combustion under different oxygen supply concentrations," Applied Energy, Elsevier, vol. 88(9), pages 3189-3196.
    3. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    4. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "Production of biodiesel using high free fatty acid feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3275-3285.
    5. Sharma, Yogesh Chandra & Singh, Veena, 2017. "Microalgal biodiesel: A possible solution for India’s energy security," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 72-88.
    6. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Hazrat, M.A., 2015. "Prospect of biofuels as an alternative transport fuel in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 331-351.
    7. Swathi Somaiyan Babu & Rashmi Gondi & Godvin Sharmila Vincent & Godwin Christopher JohnSamuel & Rajesh Banu Jeyakumar, 2022. "Microalgae Biomass and Lipids as Feedstock for Biofuels: Sustainable Biotechnology Strategies," Sustainability, MDPI, vol. 14(22), pages 1-31, November.
    8. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "The effects of water on biodiesel production and refining technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3456-3470.
    9. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    10. Bharathiraja, B. & Chakravarthy, M. & Ranjith Kumar, R. & Yogendran, D. & Yuvaraj, D. & Jayamuthunagai, J. & Praveen Kumar, R. & Palani, S., 2015. "Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 634-653.
    11. Nirmala, N. & Dawn, S.S., 2021. "Optimization of Chlorella variabilis. MK039712.1 lipid transesterification using Response Surface Methodology and analytical characterization of biodiesel," Renewable Energy, Elsevier, vol. 179(C), pages 1663-1673.
    12. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    13. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    14. Manzano-Agugliaro, F. & Sanchez-Muros, M.J. & Barroso, F.G. & Martínez-Sánchez, A. & Rojo, S. & Pérez-Bañón, C., 2012. "Insects for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3744-3753.
    15. Singh, Anoop & Olsen, Stig Irving, 2011. "A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels," Applied Energy, Elsevier, vol. 88(10), pages 3548-3555.
    16. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    17. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.
    18. Suparmaniam, Uganeeswary & Lam, Man Kee & Uemura, Yoshimitsu & Lim, Jun Wei & Lee, Keat Teong & Shuit, Siew Hoong, 2019. "Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    19. Taylor, Benjamin & Xiao, Ning & Sikorski, Janusz & Yong, Minloon & Harris, Tom & Helme, Tim & Smallbone, Andrew & Bhave, Amit & Kraft, Markus, 2013. "Techno-economic assessment of carbon-negative algal biodiesel for transport solutions," Applied Energy, Elsevier, vol. 106(C), pages 262-274.
    20. Ahmad, A.L. & Yasin, N.H. Mat & Derek, C.J.C. & Lim, J.K., 2011. "Microalgae as a sustainable energy source for biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 584-593, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:10:p:3532-3540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.