IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p8939-d611684.html
   My bibliography  Save this article

Wheat-Straw-Derived Activated Biochar as a Renewable Support of Ni-CeO 2 Catalysts for CO 2 Methanation

Author

Listed:
  • Christian Di Stasi

    (Aragón Institute of Engineering Research (I3A), Thermochemical Processes Group, Escuela Politécnica Superior-University of Zaragoza, Crta. Cuarte s/n, 22071 Huesca, Spain)

  • Simona Renda

    (Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy)

  • Gianluca Greco

    (Aragón Institute of Engineering Research (I3A), Thermochemical Processes Group, Escuela Politécnica Superior-University of Zaragoza, Crta. Cuarte s/n, 22071 Huesca, Spain)

  • Belén González

    (Aragón Institute of Engineering Research (I3A), Thermochemical Processes Group, Escuela Politécnica Superior-University of Zaragoza, Crta. Cuarte s/n, 22071 Huesca, Spain)

  • Vincenzo Palma

    (Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy)

  • Joan J. Manyà

    (Aragón Institute of Engineering Research (I3A), Thermochemical Processes Group, Escuela Politécnica Superior-University of Zaragoza, Crta. Cuarte s/n, 22071 Huesca, Spain)

Abstract

Ceria- and urea-doped activated biochars were used as support for Ni-based catalysts for CO 2 methanation purposes. Different materials were prepared and tested to find the best catalytic formulation. After several CO 2 methanation experiments—carried out at 0.35–1.0 MPa and 300–500 °C—it was found that the most suitable catalyst was a wheat-straw-derived activated biochar loaded with 30 wt.% of CeO 2 and 20 wt.% of Ni. Using this catalyst, a CO 2 conversion of 65% with a CH 4 selectivity of 95% was reached at 1.0 MPa, 400 °C, and 13,200 h −1 . From the study of the influence of the gas hourly space velocity, it was deduced that the most likely reaction mechanism was a reverse water–gas shift reaction, followed by CO hydrogenation. N-doping of the carbon support as an alternative to the use of ceria was also investigated. However, both CO 2 conversion and selectivity toward CH 4 values were clearly lower than those obtained for the ceria-containing catalyst cited above. The outcomes of this work indicate that a renewable biomass-derived support can be effectively employed in the catalytic conversion of CO 2 to methane.

Suggested Citation

  • Christian Di Stasi & Simona Renda & Gianluca Greco & Belén González & Vincenzo Palma & Joan J. Manyà, 2021. "Wheat-Straw-Derived Activated Biochar as a Renewable Support of Ni-CeO 2 Catalysts for CO 2 Methanation," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8939-:d:611684
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/8939/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/8939/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thema, M. & Bauer, F. & Sterner, M., 2019. "Power-to-Gas: Electrolysis and methanation status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 775-787.
    2. Wang, Xiaoliu & Yang, Meng & Zhu, Xiaonan & Zhu, Lingjun & Wang, Shurong, 2020. "Experimental study and life cycle assessment of CO2 methanation over biochar supported catalysts," Applied Energy, Elsevier, vol. 280(C).
    3. Wei-Jen Huang & Kai-Jung Kao & Li-Lian Liu & Chi-Wen Liao & Yin-Lung Han, 2018. "An Assessment of Direct Dissolved Inorganic Carbon Injection to the Coastal Region: A Model Result," Sustainability, MDPI, vol. 10(4), pages 1-10, April.
    4. Anny Key de Souza Mendonça & Silvio Aparecido da Silva & Luísa Zeredo Pereira & Antonio Cezar Bornia & Dalton Francisco de Andrade, 2020. "An Overview of Environmental Policies for Mitigation and Adaptation to Climate Change and Application of Multilevel Regression Analysis to Investigate the CO 2 Emissions over the Years of 1970 to 2018," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    5. Greco, Gianluca & Di Stasi, Christian & Rego, Filipe & González, Belén & Manyà, Joan J., 2020. "Effects of slow-pyrolysis conditions on the products yields and properties and on exergy efficiency: A comprehensive assessment for wheat straw," Applied Energy, Elsevier, vol. 279(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Barbaresi & Mirko Morini & Agostino Gambarotta, 2022. "Review on the Status of the Research on Power-to-Gas Experimental Activities," Energies, MDPI, vol. 15(16), pages 1-32, August.
    2. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    3. David Borge-Diez & Enrique Rosales-Asensio & Emin Açıkkalp & Daniel Alonso-Martínez, 2023. "Analysis of Power to Gas Technologies for Energy Intensive Industries in European Union," Energies, MDPI, vol. 16(1), pages 1-22, January.
    4. Navarro, J.C. & Baena-Moreno, F.M. & Centeno, M.A. & Laguna, O.H. & Almagro, J.F. & Odriozola, J.A., 2023. "Process design and utilisation strategy for CO2 capture in flue gases. Technical assessment and preliminary economic approach for steel mills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Mohamed, Badr A. & O'Boyle, Marnie & Li, Loretta Y., 2023. "Co-pyrolysis of sewage sludge with lignocellulosic and algal biomass for sustainable liquid and gaseous fuel production: A life cycle assessment and techno-economic analysis," Applied Energy, Elsevier, vol. 346(C).
    6. Lena Maria Ringsgwandl & Johannes Schaffert & Nils Brücken & Rolf Albus & Klaus Görner, 2022. "Current Legislative Framework for Green Hydrogen Production by Electrolysis Plants in Germany," Energies, MDPI, vol. 15(5), pages 1-16, February.
    7. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    8. Baghel, Paramjeet & Sakhiya, Anil Kumar & Kaushal, Priyanka, 2022. "Influence of temperature on slow pyrolysis of Prosopis Juliflora: An experimental and thermodynamic approach," Renewable Energy, Elsevier, vol. 185(C), pages 538-551.
    9. Bidart, Christian & Wichert, Martin & Kolb, Gunther & Held, Michael, 2022. "Biogas catalytic methanation for biomethane production as fuel in freight transport - A carbon footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Corey Duncan & Robin Roche & Samir Jemei & Marie-Cécile Péra, 2022. "Techno-economical modelling of a power-to-gas system for plant configuration evaluation in a local context," Post-Print hal-03692975, HAL.
    11. Upadhyay, Mukesh & Kim, Ayeon & Paramanantham, SalaiSargunan S. & Kim, Heehyang & Lim, Dongjun & Lee, Sunyoung & Moon, Sangbong & Lim, Hankwon, 2022. "Three-dimensional CFD simulation of proton exchange membrane water electrolyser: Performance assessment under different condition," Applied Energy, Elsevier, vol. 306(PA).
    12. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    13. Kim, Jeongdong & Qi, Meng & Park, Jinwoo & Moon, Il, 2023. "Revealing the impact of renewable uncertainty on grid-assisted power-to-X: A data-driven reliability-based design optimization approach," Applied Energy, Elsevier, vol. 339(C).
    14. Schlund, David & Theile, Philipp, 2022. "Simultaneity of green energy and hydrogen production: Analysing the dispatch of a grid-connected electrolyser," Energy Policy, Elsevier, vol. 166(C).
    15. Michael Sterner & Michael Specht, 2021. "Power-to-Gas and Power-to-X—The History and Results of Developing a New Storage Concept," Energies, MDPI, vol. 14(20), pages 1-18, October.
    16. Sánchez, Antonio & Martín, Mariano & Zhang, Qi, 2021. "Optimal design of sustainable power-to-fuels supply chains for seasonal energy storage," Energy, Elsevier, vol. 234(C).
    17. Drechsler, Carsten & Agar, David W., 2020. "Intensified integrated direct air capture - power-to-gas process based on H2O and CO2 from ambient air," Applied Energy, Elsevier, vol. 273(C).
    18. Speckmann, Friedrich-W. & Keiner, Dominik & Birke, Kai Peter, 2020. "Influence of rectifiers on the techno-economic performance of alkaline electrolysis in a smart grid environment," Renewable Energy, Elsevier, vol. 159(C), pages 107-116.
    19. Salehi, Javad & Namvar, Amin & Gazijahani, Farhad Samadi & Shafie-khah, Miadreza & Catalão, João P.S., 2022. "Effect of power-to-gas technology in energy hub optimal operation and gas network congestion reduction," Energy, Elsevier, vol. 240(C).
    20. Pan, Guangsheng & Gu, Wei & Chen, Sheng & Lu, Yuping & Zhou, Suyang & Wei, Zhinong, 2021. "Investment equilibrium of an integrated multi–stakeholder electricity–gas–hydrogen system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:8939-:d:611684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.