IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v574y2019i7777d10.1038_d41586-019-03013-5.html
   My bibliography  Save this article

Why deep-learning AIs are so easy to fool

Author

Listed:
  • Douglas Heaven

Abstract

Artificial-intelligence researchers are trying to fix the flaws of neural networks.

Suggested Citation

  • Douglas Heaven, 2019. "Why deep-learning AIs are so easy to fool," Nature, Nature, vol. 574(7777), pages 163-166, October.
  • Handle: RePEc:nat:nature:v:574:y:2019:i:7777:d:10.1038_d41586-019-03013-5
    DOI: 10.1038/d41586-019-03013-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/d41586-019-03013-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/d41586-019-03013-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Galaz, Victor & Centeno, Miguel A. & Callahan, Peter W. & Causevic, Amar & Patterson, Thayer & Brass, Irina & Baum, Seth & Farber, Darryl & Fischer, Joern & Garcia, David & McPhearson, Timon & Jimenez, 2021. "Artificial intelligence, systemic risks, and sustainability," Technology in Society, Elsevier, vol. 67(C).
    2. Dominik Bork & Syed Juned Ali & Georgi Milenov Dinev, 2023. "AI-Enhanced Hybrid Decision Management," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 65(2), pages 179-199, April.
    3. Shi, Zhongtuo & Yao, Wei & Li, Zhouping & Zeng, Lingkang & Zhao, Yifan & Zhang, Runfeng & Tang, Yong & Wen, Jinyu, 2020. "Artificial intelligence techniques for stability analysis and control in smart grids: Methodologies, applications, challenges and future directions," Applied Energy, Elsevier, vol. 278(C).
    4. Mingli Chen & Andreas Joseph & Michael Kumhof & Xinlei Pan & Xuan Zhou, 2021. "Deep Reinforcement Learning in a Monetary Model," Papers 2104.09368, arXiv.org, revised Jan 2023.
    5. Jin Xiao & Yuhang Tian & Yanlin Jia & Xiaoyi Jiang & Lean Yu & Shouyang Wang, 2023. "Black-Box Attack-Based Security Evaluation Framework for Credit Card Fraud Detection Models," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 986-1001, September.

    More about this item

    Keywords

    Computer science; Information technology;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:574:y:2019:i:7777:d:10.1038_d41586-019-03013-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.