IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v277y2020ics0306261920311041.html
   My bibliography  Save this article

Impacts of diversity in commercial building occupancy profiles on district energy demand and supply

Author

Listed:
  • Happle, Gabriel
  • Fonseca, Jimeno A.
  • Schlueter, Arno

Abstract

Urban building energy models (UBEM) have the potential to become integral planning tools for district energy systems due to the dynamic, interactive and complex nature of temporal building energy demand patterns. Although the demand patterns are related to the occupancy profiles of buildings supplied by district energy systems, occupant behavior in current UBEM approaches does not usually consider diversity in occupancy profiles among buildings of the same use-type.

Suggested Citation

  • Happle, Gabriel & Fonseca, Jimeno A. & Schlueter, Arno, 2020. "Impacts of diversity in commercial building occupancy profiles on district energy demand and supply," Applied Energy, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920311041
    DOI: 10.1016/j.apenergy.2020.115594
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920311041
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115594?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gang, Wenjie & Augenbroe, Godfried & Wang, Shengwei & Fan, Cheng & Xiao, Fu, 2016. "An uncertainty-based design optimization method for district cooling systems," Energy, Elsevier, vol. 102(C), pages 516-527.
    2. Chow, T. T. & Chan, Apple L. S. & Song, C. L., 2004. "Building-mix optimization in district cooling system implementation," Applied Energy, Elsevier, vol. 77(1), pages 1-13, January.
    3. Eguaras-Martínez, María & Vidaurre-Arbizu, Marina & Martín-Gómez, César, 2014. "Simulation and evaluation of Building Information Modeling in a real pilot site," Applied Energy, Elsevier, vol. 114(C), pages 475-484.
    4. Peng, Yuzhen & Rysanek, Adam & Nagy, Zoltán & Schlüter, Arno, 2018. "Using machine learning techniques for occupancy-prediction-based cooling control in office buildings," Applied Energy, Elsevier, vol. 211(C), pages 1343-1358.
    5. Shimoda, Yoshiyuki & Asahi, Takahiro & Taniguchi, Ayako & Mizuno, Minoru, 2007. "Evaluation of city-scale impact of residential energy conservation measures using the detailed end-use simulation model," Energy, Elsevier, vol. 32(9), pages 1617-1633.
    6. Gang, Wenjie & Wang, Shengwei & Gao, Diance & Xiao, Fu, 2015. "Performance assessment of district cooling systems for a new development district at planning stage," Applied Energy, Elsevier, vol. 140(C), pages 33-43.
    7. Shu, Haiwen & Duanmu, Lin & Zhang, Chaohui & Zhu, Yingxin, 2010. "Study on the decision-making of district cooling and heating systems by means of value engineering," Renewable Energy, Elsevier, vol. 35(9), pages 1929-1939.
    8. Chua, K.J. & Chou, S.K., 2010. "Energy performance of residential buildings in Singapore," Energy, Elsevier, vol. 35(2), pages 667-678.
    9. Chow, T. T. & Au, W. H. & Yau, Raymond & Cheng, Vincent & Chan, Apple & Fong, K. F., 2004. "Applying district-cooling technology in Hong Kong," Applied Energy, Elsevier, vol. 79(3), pages 275-289, November.
    10. Fonseca, Jimeno A. & Schlueter, Arno, 2015. "Integrated model for characterization of spatiotemporal building energy consumption patterns in neighborhoods and city districts," Applied Energy, Elsevier, vol. 142(C), pages 247-265.
    11. An, Jingjing & Yan, Da & Hong, Tianzhen & Sun, Kaiyu, 2017. "A novel stochastic modeling method to simulate cooling loads in residential districts," Applied Energy, Elsevier, vol. 206(C), pages 134-149.
    12. Zhen, Li & Lin, D.M. & Shu, H.W. & Jiang, Shuang & Zhu, Y.X., 2007. "District cooling and heating with seawater as heat source and sink in Dalian, China," Renewable Energy, Elsevier, vol. 32(15), pages 2603-2616.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prataviera, Enrico & Zarrella, Angelo & Morejohn, Joshua & Narayanan, Vinod, 2024. "Exploiting district cooling network and urban building energy modeling for large-scale integrated energy conservation analyses," Applied Energy, Elsevier, vol. 356(C).
    2. Broadstock, David C. & Wang, Xiangnan, 2024. "District cooling services: A bibliometric review and topic classification of existing research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
    3. Yin, Linfei & Qiu, Yao, 2022. "Neural network dynamic differential control for long-term price guidance mechanism of flexible energy service providers," Energy, Elsevier, vol. 255(C).
    4. Rouleau, Jean & Gosselin, Louis, 2021. "Impacts of the COVID-19 lockdown on energy consumption in a Canadian social housing building," Applied Energy, Elsevier, vol. 287(C).
    5. Martín Mosteiro-Romero & Arno Schlueter, 2021. "Effects of Occupants and Local Air Temperatures as Sources of Stochastic Uncertainty in District Energy System Modeling," Energies, MDPI, vol. 14(8), pages 1-30, April.
    6. Perwez, Usama & Yamaguchi, Yohei & Ma, Tao & Dai, Yanjun & Shimoda, Yoshiyuki, 2022. "Multi-scale GIS-synthetic hybrid approach for the development of commercial building stock energy model," Applied Energy, Elsevier, vol. 323(C).
    7. Doma, Aya & Padsala, Rushikesh & Ouf, Mohamed M. & Eicker, Ursula, 2024. "Bottom-up framework for modelling occupancy-based demand-side management strategies in a mixed-use district," Applied Energy, Elsevier, vol. 375(C).
    8. Peng Wu & Yisheng Liu, 2023. "Impact of Urban Form at the Block Scale on Renewable Energy Application and Building Energy Efficiency," Sustainability, MDPI, vol. 15(14), pages 1-26, July.
    9. Yucheng Guo & Jie Shi & Tong Guo & Fei Guo & Feng Lu & Lingqi Su, 2024. "Grey-Box Method for Urban Building Energy Modelling: Advancements and Potentials," Energies, MDPI, vol. 17(21), pages 1-25, October.
    10. Walker, Linus & Hischier, Illias & Schlueter, Arno, 2022. "Scenario-based robustness assessment of building system life cycle performance," Applied Energy, Elsevier, vol. 311(C).
    11. Wei, Zhichen & Calautit, John, 2023. "Predictive control of low-temperature heating system with passive thermal mass energy storage and photovoltaic system: Impact of occupancy patterns and climate change," Energy, Elsevier, vol. 269(C).
    12. Prataviera, Enrico & Vivian, Jacopo & Lombardo, Giulia & Zarrella, Angelo, 2022. "Evaluation of the impact of input uncertainty on urban building energy simulations using uncertainty and sensitivity analysis," Applied Energy, Elsevier, vol. 311(C).
    13. Shi, Zhongming & Fonseca, Jimeno A. & Schlueter, Arno, 2021. "A parametric method using vernacular urban block typologies for investigating interactions between solar energy use and urban design," Renewable Energy, Elsevier, vol. 165(P1), pages 823-841.
    14. Yamaguchi, Yohei & Shoda, Yuto & Yoshizawa, Shinya & Imai, Tatsuya & Perwez, Usama & Shimoda, Yoshiyuki & Hayashi, Yasuhiro, 2023. "Feasibility assessment of net zero-energy transformation of building stock using integrated synthetic population, building stock, and power distribution network framework," Applied Energy, Elsevier, vol. 333(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    2. An, Jingjing & Yan, Da & Hong, Tianzhen & Sun, Kaiyu, 2017. "A novel stochastic modeling method to simulate cooling loads in residential districts," Applied Energy, Elsevier, vol. 206(C), pages 134-149.
    3. Rismanchi, B., 2017. "District energy network (DEN), current global status and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 571-579.
    4. Gang, Wenjie & Augenbroe, Godfried & Wang, Shengwei & Fan, Cheng & Xiao, Fu, 2016. "An uncertainty-based design optimization method for district cooling systems," Energy, Elsevier, vol. 102(C), pages 516-527.
    5. Yan, Chengchu & Gang, Wenjie & Niu, Xiaofeng & Peng, Xujian & Wang, Shengwei, 2017. "Quantitative evaluation of the impact of building load characteristics on energy performance of district cooling systems," Applied Energy, Elsevier, vol. 205(C), pages 635-643.
    6. Gang, Wenjie & Wang, Shengwei & Xiao, Fu & Gao, Dian-ce, 2016. "District cooling systems: Technology integration, system optimization, challenges and opportunities for applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 253-264.
    7. Deng, Na & Cai, Rongchang & Gao, Yuan & Zhou, Zhihua & He, Guansong & Liu, Dongyi & Zhang, Awen, 2017. "A MINLP model of optimal scheduling for a district heating and cooling system: A case study of an energy station in Tianjin," Energy, Elsevier, vol. 141(C), pages 1750-1763.
    8. Gang, Wenjie & Wang, Shengwei & Gao, Diance & Xiao, Fu, 2015. "Performance assessment of district cooling systems for a new development district at planning stage," Applied Energy, Elsevier, vol. 140(C), pages 33-43.
    9. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    10. Best, Robert E. & Flager, Forest & Lepech, Michael D., 2015. "Modeling and optimization of building mix and energy supply technology for urban districts," Applied Energy, Elsevier, vol. 159(C), pages 161-177.
    11. Dong, Bing & Liu, Yapan & Fontenot, Hannah & Ouf, Mohamed & Osman, Mohamed & Chong, Adrian & Qin, Shuxu & Salim, Flora & Xue, Hao & Yan, Da & Jin, Yuan & Han, Mengjie & Zhang, Xingxing & Azar, Elie & , 2021. "Occupant behavior modeling methods for resilient building design, operation and policy at urban scale: A review," Applied Energy, Elsevier, vol. 293(C).
    12. Deng, Na & He, Guansong & Gao, Yuan & Yang, Bin & Zhao, Jun & He, Shunming & Tian, Xue, 2017. "Comparative analysis of optimal operation strategies for district heating and cooling system based on design and actual load," Applied Energy, Elsevier, vol. 205(C), pages 577-588.
    13. Bianchi, Carlo & Zhang, Liang & Goldwasser, David & Parker, Andrew & Horsey, Henry, 2020. "Modeling occupancy-driven building loads for large and diversified building stocks through the use of parametric schedules," Applied Energy, Elsevier, vol. 276(C).
    14. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    15. Kazas, Georgios & Fabrizio, Enrico & Perino, Marco, 2017. "Energy demand profile generation with detailed time resolution at an urban district scale: A reference building approach and case study," Applied Energy, Elsevier, vol. 193(C), pages 243-262.
    16. Tian, Wei & Heo, Yeonsook & de Wilde, Pieter & Li, Zhanyong & Yan, Da & Park, Cheol Soo & Feng, Xiaohang & Augenbroe, Godfried, 2018. "A review of uncertainty analysis in building energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 285-301.
    17. Neri, Manfredi & Guelpa, Elisa & Verda, Vittorio, 2022. "Design and connection optimization of a district cooling network: Mixed integer programming and heuristic approach," Applied Energy, Elsevier, vol. 306(PA).
    18. Inayat, Abrar & Raza, Mohsin, 2019. "District cooling system via renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 360-373.
    19. Ferrari, Simone & Zagarella, Federica & Caputo, Paola & D'Amico, Antonino, 2019. "Results of a literature review on methods for estimating buildings energy demand at district level," Energy, Elsevier, vol. 175(C), pages 1130-1137.
    20. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Weng, Peifen & Ren, Jianxing, 2018. "Coupling optimization of urban spatial structure and neighborhood-scale distributed energy systems," Energy, Elsevier, vol. 144(C), pages 472-481.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920311041. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.