IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v190y2024ipbs1364032123007517.html
   My bibliography  Save this article

District cooling services: A bibliometric review and topic classification of existing research

Author

Listed:
  • Broadstock, David C.
  • Wang, Xiangnan

Abstract

In this study we provide a general review of research into district cooling. District cooling systems and services (DCS) are increasingly widely deployed and there is an associated increase in the rate of scientific production (research papers published) on the subject. In this paper, to facilitate discussion around the key parameters and issues which matter to the successful deployment of DCS, we objectively identify the central topics and themes of DCS research. To do see we employ a combination of bibliometric summary analysis, complemented by formal topic classification using a bespoke structural topic model, to inform a comprehensive literature review and summary. In doing so we verify the structure of existing research, and the spread of system design and engineering considerations that have been prominent in research to date. Moreover we are able to confirm some absences within the literature. With this, our study provides both a valuable overview of the early research into DCS, and also highlights potential research priorities for researchers planning to work on the topic.

Suggested Citation

  • Broadstock, David C. & Wang, Xiangnan, 2024. "District cooling services: A bibliometric review and topic classification of existing research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PB).
  • Handle: RePEc:eee:rensus:v:190:y:2024:i:pb:s1364032123007517
    DOI: 10.1016/j.rser.2023.113893
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123007517
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113893?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donthu, Naveen & Kumar, Satish & Mukherjee, Debmalya & Pandey, Nitesh & Lim, Weng Marc, 2021. "How to conduct a bibliometric analysis: An overview and guidelines," Journal of Business Research, Elsevier, vol. 133(C), pages 285-296.
    2. Rikkas, Rebecka & Lahdelma, Risto, 2021. "Energy supply and storage optimization for mixed-type buildings," Energy, Elsevier, vol. 231(C).
    3. Elnazeer Ali Hamid Abdalla & Perumal Nallagownden & Nursyarizal Bin Mohd Nor & Mohd Fakhizan Romlie & Sabo Miya Hassan, 2018. "An Application of a Novel Technique for Assessing the Operating Performance of Existing Cooling Systems on a University Campus," Energies, MDPI, vol. 11(4), pages 1-24, March.
    4. Dominik Franjo Dominković & Goran Krajačić, 2019. "District Cooling Versus Individual Cooling in Urban Energy Systems: The Impact of District Energy Share in Cities on the Optimal Storage Sizing," Energies, MDPI, vol. 12(3), pages 1-21, January.
    5. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    6. Saeid Charani Shandiz & Alice Denarie & Gabriele Cassetti & Marco Calderoni & Antoine Frein & Mario Motta, 2019. "A Simplified Methodology for Existing Tertiary Buildings’ Cooling Energy Need Estimation at District Level: A Feasibility Study of a District Cooling System in Marrakech," Energies, MDPI, vol. 12(5), pages 1-20, March.
    7. Probert, S.D. & Yeung, C.M. & Chu, C.Y., 1982. "Internally insulated pipes for district-cooling systems," Applied Energy, Elsevier, vol. 12(2), pages 99-115, October.
    8. Levihn, Fabian, 2017. "CHP and heat pumps to balance renewable power production: Lessons from the district heating network in Stockholm," Energy, Elsevier, vol. 137(C), pages 670-678.
    9. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
    10. Happle, Gabriel & Fonseca, Jimeno A. & Schlueter, Arno, 2020. "Impacts of diversity in commercial building occupancy profiles on district energy demand and supply," Applied Energy, Elsevier, vol. 277(C).
    11. Lake, Andrew & Rezaie, Behanz, 2018. "Energy and exergy efficiencies assessment for a stratified cold thermal energy storage," Applied Energy, Elsevier, vol. 220(C), pages 605-615.
    12. Zhen, Li & Lin, D.M. & Shu, H.W. & Jiang, Shuang & Zhu, Y.X., 2007. "District cooling and heating with seawater as heat source and sink in Dalian, China," Renewable Energy, Elsevier, vol. 32(15), pages 2603-2616.
    13. Choi, Sung & Park, Jungjoon & Kang, Yong Tae, 2019. "Experimental investigation on CO2 hydrate formation/dissociation for cold thermal energy harvest and transportation applications," Applied Energy, Elsevier, vol. 242(C), pages 1358-1368.
    14. Campos, Gustavo & Liu, Yu & Schmidt, Devon & Yonkoski, Joseph & Colvin, Daniel & Trombly, David M. & El-Farra, Nael H. & Palazoglu, Ahmet, 2021. "Optimal real-time dispatching of chillers and thermal storage tank in a university campus central plant," Applied Energy, Elsevier, vol. 300(C).
    15. Bo, He & Gustafsson, E.Mari & Setterwall, Fredrik, 1999. "Tetradecane and hexadecane binary mixtures as phase change materials (PCMs) for cool storage in district cooling systems," Energy, Elsevier, vol. 24(12), pages 1015-1028.
    16. Powell, Kody M. & Cole, Wesley J. & Ekarika, Udememfon F. & Edgar, Thomas F., 2013. "Optimal chiller loading in a district cooling system with thermal energy storage," Energy, Elsevier, vol. 50(C), pages 445-453.
    17. Alice Mugnini & Gianluca Coccia & Fabio Polonara & Alessia Arteconi, 2019. "Potential of District Cooling Systems: A Case Study on Recovering Cold Energy from Liquefied Natural Gas Vaporization," Energies, MDPI, vol. 12(15), pages 1-13, August.
    18. Sun, Qibei & Kim, Shol & Kang, Yong Tae, 2017. "Study on dissociation characteristics of CO2 hydrate with THF for cooling application," Applied Energy, Elsevier, vol. 190(C), pages 249-256.
    19. Yifang Tang & Zhiqiang Liu & Lan Li, 2019. "Performance Comparison of a Distributed Energy System under Different Control Strategies with a Conventional Energy System," Energies, MDPI, vol. 12(24), pages 1-17, December.
    20. Frayssinet, Loïc & Merlier, Lucie & Kuznik, Frédéric & Hubert, Jean-Luc & Milliez, Maya & Roux, Jean-Jacques, 2018. "Modeling the heating and cooling energy demand of urban buildings at city scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2318-2327.
    21. Lund, Henrik & Duic, Neven & Østergaard, Poul Alberg & Mathiesen, Brian Vad, 2018. "Future district heating systems and technologies: On the role of smart energy systems and 4th generation district heating," Energy, Elsevier, vol. 165(PA), pages 614-619.
    22. Dominković, D.F. & Bin Abdul Rashid, K.A. & Romagnoli, A. & Pedersen, A.S. & Leong, K.C. & Krajačić, G. & Duić, N., 2017. "Potential of district cooling in hot and humid climates," Applied Energy, Elsevier, vol. 208(C), pages 49-61.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yu & Rezgui, Yacine & Zhu, Hanxing, 2017. "District heating and cooling optimization and enhancement – Towards integration of renewables, storage and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 281-294.
    2. Rismanchi, B., 2017. "District energy network (DEN), current global status and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 571-579.
    3. Gang, Wenjie & Wang, Shengwei & Xiao, Fu & Gao, Dian-ce, 2016. "District cooling systems: Technology integration, system optimization, challenges and opportunities for applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 253-264.
    4. Beatriz María Paredes-Sánchez & José Pablo Paredes & Natalia Caparrini & Elena Rivo-López, 2021. "Analysis of District Heating and Cooling Energy Systems in Spain: Resources, Technology and Management," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
    5. Charani Shandiz, Saeid & Rismanchi, Behzad & Foliente, Greg, 2021. "Energy master planning for net-zero emission communities: State of the art and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    6. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    7. Park, Joon Ho & Park, Jungjoon & Lee, Jae Won & Kang, Yong Tae, 2023. "Progress in CO2 hydrate formation and feasibility analysis for cold thermal energy harvesting application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    8. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu, 2023. "Globally optimal control of hybrid chilled water plants integrated with small-scale thermal energy storage for energy-efficient operation," Energy, Elsevier, vol. 262(PA).
    9. Lake, Andrew & Rezaie, Behanz & Beyerlein, Steven, 2017. "Review of district heating and cooling systems for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 417-425.
    10. Ma, Zheng & Knotzer, Armin & Billanes, Joy Dalmacio & Jørgensen, Bo Nørregaard, 2020. "A literature review of energy flexibility in district heating with a survey of the stakeholders’ participation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    11. Zhou, Yuekuan & Zheng, Siqian & Hensen, Jan L.M., 2024. "Machine learning-based digital district heating/cooling with renewable integrations and advanced low-carbon transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    12. Gjorgievski, Vladimir Z. & Cundeva, Snezana & Georghiou, George E., 2021. "Social arrangements, technical designs and impacts of energy communities: A review," Renewable Energy, Elsevier, vol. 169(C), pages 1138-1156.
    13. Yan, Chengchu & Gang, Wenjie & Niu, Xiaofeng & Peng, Xujian & Wang, Shengwei, 2017. "Quantitative evaluation of the impact of building load characteristics on energy performance of district cooling systems," Applied Energy, Elsevier, vol. 205(C), pages 635-643.
    14. Anderson, Austin & Rezaie, Behnaz & Rosen, Marc A., 2021. "An innovative approach to enhance sustainability of a district cooling system by adjusting cold thermal storage and chiller operation," Energy, Elsevier, vol. 214(C).
    15. Sun, Fangtian & Li, Junlong & Fu, Lin & Li, Yonghong & Wang, Ruixiang & Zhang, Shigang, 2020. "New configurations of district heating and cooling system based on absorption and compression chillers driven by waste heat of flue gas from coke ovens," Energy, Elsevier, vol. 193(C).
    16. Zhang, Menglin & Wu, Qiuwei & Wen, Jinyu & Lin, Zhongwei & Fang, Fang & Chen, Qun, 2021. "Optimal operation of integrated electricity and heat system: A review of modeling and solution methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Yang, Kairan & Chen, Zuozhou & Zhang, Peng, 2024. "State-of-the-art of cold energy storage, release and transport using CO2 double hydrate slurry," Applied Energy, Elsevier, vol. 358(C).
    18. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Dereje S. Ayou & Valerie Eveloy, 2020. "Integration of Municipal Air-Conditioning, Power, and Gas Supplies Using an LNG Cold Exergy-Assisted Kalina Cycle System," Energies, MDPI, vol. 13(18), pages 1-31, September.
    20. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:190:y:2024:i:pb:s1364032123007517. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.