IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v302y2024ics0360544224015032.html
   My bibliography  Save this article

Optimal operation for district cooling systems coupled with ice storage units based on the per-unit value form

Author

Listed:
  • Zhu, Peng
  • Zheng, J.H.
  • Li, Zhigang
  • Wu, Q.H.
  • Wang, Lixiao

Abstract

The integration of non-dispatchable renewable resources into the power system, as part of efforts to mitigate carbon emissions and achieve carbon neutrality, presents a significant problem in maintaining the balance between generation and consumption within multi-energy complementary systems. The widespread adoption of district cooling systems (DCS) with ice storage units has proven to be a highly effective approach for enhancing flexibility by changing the operating schedule or adopting different control strategies to participate in demand response, reducing load peaks or peaking and filling to improve system economy. However, the nonlinearity and the presence of multiple variables with different orders of magnitude of the DCS model pose a significant challenge for arithmetic operations well. The present study establishes models based on per-unit value for DCS coupled with ice storage units, and employes several objective functions to validate the selection of base values, demonstrating the superiority of the calculation process for per-unit value model. Simulation results show that, the adoption of per-unit value models of DCS significantly reduce the calculation time, particularly for large systems where it would be possible to have a reduction in time-consuming by more than 68%. Additionally, this paper suggests an operational strategy for real DCS that incorporates demand response by per-unit value models, demonstrating the efficacy of the proposed approach in achieving a reduction of 11.17% in operating costs, while simultaneously enhancing flexibility to meet the load demands of multi-energy complementary systems.

Suggested Citation

  • Zhu, Peng & Zheng, J.H. & Li, Zhigang & Wu, Q.H. & Wang, Lixiao, 2024. "Optimal operation for district cooling systems coupled with ice storage units based on the per-unit value form," Energy, Elsevier, vol. 302(C).
  • Handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015032
    DOI: 10.1016/j.energy.2024.131730
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224015032
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131730?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deng, Yan & Zeng, Rong & Liu, Yicai, 2022. "A novel off-design model to optimize combined cooling, heating and power system with hybrid chillers for different operation strategies," Energy, Elsevier, vol. 239(PB).
    2. Kim, Donghun & Wang, Zhe & Brugger, James & Blum, David & Wetter, Michael & Hong, Tianzhen & Piette, Mary Ann, 2022. "Site demonstration and performance evaluation of MPC for a large chiller plant with TES for renewable energy integration and grid decarbonization," Applied Energy, Elsevier, vol. 321(C).
    3. Tian, Zhe & Niu, Jide & Lu, Yakai & He, Shunming & Tian, Xue, 2016. "The improvement of a simulation model for a distributed CCHP system and its influence on optimal operation cost and strategy," Applied Energy, Elsevier, vol. 165(C), pages 430-444.
    4. Powell, Kody M. & Cole, Wesley J. & Ekarika, Udememfon F. & Edgar, Thomas F., 2013. "Optimal chiller loading in a district cooling system with thermal energy storage," Energy, Elsevier, vol. 50(C), pages 445-453.
    5. Jiang, Tao & Wu, Chenghao & Zhang, Rufeng & Li, Xue & Li, Fangxing, 2022. "Risk-averse TSO-DSOs coordinated distributed dispatching considering renewable energy and demand response uncertainties," Applied Energy, Elsevier, vol. 327(C).
    6. Lu, Xinhui & Li, Haobin & Zhou, Kaile & Yang, Shanlin, 2023. "Optimal load dispatch of energy hub considering uncertainties of renewable energy and demand response," Energy, Elsevier, vol. 262(PB).
    7. Ghayour, Sepideh Saravani & Barforoushi, Taghi, 2022. "Optimal scheduling of electrical and thermal resources and appliances in a smart home under uncertainty," Energy, Elsevier, vol. 261(PA).
    8. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    9. Patwal, Rituraj Singh & Narang, Nitin, 2020. "Multi-objective generation scheduling of integrated energy system using fuzzy based surrogate worth trade-off approach," Renewable Energy, Elsevier, vol. 156(C), pages 864-882.
    10. Gang, Wenjie & Wang, Shengwei & Gao, Diance & Xiao, Fu, 2015. "Performance assessment of district cooling systems for a new development district at planning stage," Applied Energy, Elsevier, vol. 140(C), pages 33-43.
    11. Wang, L.X. & Zheng, J.H. & Li, M.S. & Lin, X. & Jing, Z.X. & Wu, P.Z. & Wu, Q.H. & Zhou, X.X., 2019. "Multi-time scale dynamic analysis of integrated energy systems: An individual-based model," Applied Energy, Elsevier, vol. 237(C), pages 848-861.
    12. Zheng, J.H. & Xiao, Wenting & Wu, C.Q. & Li, Zhigang & Wang, L.X. & Wu, Q.H., 2023. "A gradient descent direction based-cumulants method for probabilistic energy flow analysis of individual-based integrated energy systems," Energy, Elsevier, vol. 265(C).
    13. An, Jingjing & Yan, Da & Hong, Tianzhen & Sun, Kaiyu, 2017. "A novel stochastic modeling method to simulate cooling loads in residential districts," Applied Energy, Elsevier, vol. 206(C), pages 134-149.
    14. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    15. Huang, Jinbo & Li, Zhigang & Wu, Q.H., 2017. "Coordinated dispatch of electric power and district heating networks: A decentralized solution using optimality condition decomposition," Applied Energy, Elsevier, vol. 206(C), pages 1508-1522.
    16. Li, Jiale & Yang, Bo & Huang, Jianxiang & Guo, Zhengxun & Wang, Jingbo & Zhang, Rui & Hu, Yuanweiji & Shu, Hongchun & Chen, Yixuan & Yan, Yunfeng, 2023. "Optimal planning of Electricity–Hydrogen hybrid energy storage system considering demand response in active distribution network," Energy, Elsevier, vol. 273(C).
    17. Olszewski, Pawel, 2016. "Genetic optimization and experimental verification of complex parallel pumping station with centrifugal pumps," Applied Energy, Elsevier, vol. 178(C), pages 527-539.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    2. Rismanchi, B., 2017. "District energy network (DEN), current global status and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 571-579.
    3. Deng, Na & Cai, Rongchang & Gao, Yuan & Zhou, Zhihua & He, Guansong & Liu, Dongyi & Zhang, Awen, 2017. "A MINLP model of optimal scheduling for a district heating and cooling system: A case study of an energy station in Tianjin," Energy, Elsevier, vol. 141(C), pages 1750-1763.
    4. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    5. Deng, Na & He, Guansong & Gao, Yuan & Yang, Bin & Zhao, Jun & He, Shunming & Tian, Xue, 2017. "Comparative analysis of optimal operation strategies for district heating and cooling system based on design and actual load," Applied Energy, Elsevier, vol. 205(C), pages 577-588.
    6. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Dominković, D.F. & Dobravec, V. & Jiang, Y. & Nielsen, P.S. & Krajačić, G., 2018. "Modelling smart energy systems in tropical regions," Energy, Elsevier, vol. 155(C), pages 592-609.
    8. Happle, Gabriel & Fonseca, Jimeno A. & Schlueter, Arno, 2020. "Impacts of diversity in commercial building occupancy profiles on district energy demand and supply," Applied Energy, Elsevier, vol. 277(C).
    9. Gao, Cheng & Wang, Dan & Sun, Yuying & Wang, Wei & Zhang, Xiuyu, 2023. "Optimal load dispatch of multi-source looped district cooling systems based on energy and hydraulic performances," Energy, Elsevier, vol. 274(C).
    10. Guelpa, Elisa, 2021. "Impact of thermal masses on the peak load in district heating systems," Energy, Elsevier, vol. 214(C).
    11. Li, Haoran & Hou, Juan & Hong, Tianzhen & Nord, Natasa, 2022. "Distinguish between the economic optimal and lowest distribution temperatures for heat-prosumer-based district heating systems with short-term thermal energy storage," Energy, Elsevier, vol. 248(C).
    12. Dabirian, Sanam & Miller, Clayton & Adli, Alireza & Eicker, Ursula, 2024. "Gaussian-based plug load profile prediction in non-residential buildings archetype," Applied Energy, Elsevier, vol. 374(C).
    13. Persson, Urban & Wiechers, Eva & Möller, Bernd & Werner, Sven, 2019. "Heat Roadmap Europe: Heat distribution costs," Energy, Elsevier, vol. 176(C), pages 604-622.
    14. Østergaard, Poul Alberg & Werner, Sven & Dyrelund, Anders & Lund, Henrik & Arabkoohsar, Ahmad & Sorknæs, Peter & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Mathiesen, Brian Vad, 2022. "The four generations of district cooling - A categorization of the development in district cooling from origin to future prospect," Energy, Elsevier, vol. 253(C).
    15. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    16. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    17. Dereje S. Ayou & Valerie Eveloy, 2020. "Integration of Municipal Air-Conditioning, Power, and Gas Supplies Using an LNG Cold Exergy-Assisted Kalina Cycle System," Energies, MDPI, vol. 13(18), pages 1-31, September.
    18. Jiang, Tao & Wu, Chenghao & Huang, Tao & Zhang, Rufeng & Li, Xue, 2024. "Optimal market participation of VPPs in TSO-DSO coordinated energy and flexibility markets," Applied Energy, Elsevier, vol. 360(C).
    19. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    20. Zhang, Jiyuan & Tang, Hailong & Chen, Min, 2019. "Linear substitute model-based uncertainty analysis of complicated non-linear energy system performance (case study of an adaptive cycle engine)," Applied Energy, Elsevier, vol. 249(C), pages 87-108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:302:y:2024:i:c:s0360544224015032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.