IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v276y2020ics0306261920309752.html
   My bibliography  Save this article

Estimation of tank-to-wheel efficiency functions based on type approval data

Author

Listed:
  • Hjelkrem, Odd André
  • Arnesen, Petter
  • Aarseth Bø, Torstein
  • Sondell, Rebecka Snefuglli

Abstract

The representation of tank-to-wheel efficiency is for many modelling purposes simplified to a constant value. However, the relationship between tank-to-wheel efficiency and operational properties is not necessarily constant. As a result, situations with both favorable and unfavorable driving conditions will not be adequately represented in instruments for decision making. In this paper, we address this issue by estimating tank-to-wheel efficiency functions customized for use in transport and traffic modelling applications. The functions are estimated by sum of squares on aggregated data, with two different seed functions from a theoretical basis. The level of detail in the estimated functions provide more complexity for evaluations of transport systems in terms of energy and fuel usage, while avoiding too complex modelling of internal engine processes or vehicle specific type parameters. Data sets from vehicle type approval tests are used for the estimation process, and validation tests suggest that a tank-to-wheel efficiency function outperforms a constant value.

Suggested Citation

  • Hjelkrem, Odd André & Arnesen, Petter & Aarseth Bø, Torstein & Sondell, Rebecka Snefuglli, 2020. "Estimation of tank-to-wheel efficiency functions based on type approval data," Applied Energy, Elsevier, vol. 276(C).
  • Handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309752
    DOI: 10.1016/j.apenergy.2020.115463
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920309752
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115463?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taljegard, M. & Göransson, L. & Odenberger, M. & Johnsson, F., 2017. "Spacial and dynamic energy demand of the E39 highway – Implications on electrification options," Applied Energy, Elsevier, vol. 195(C), pages 681-692.
    2. Fiori, Chiara & Ahn, Kyoungho & Rakha, Hesham A., 2016. "Power-based electric vehicle energy consumption model: Model development and validation," Applied Energy, Elsevier, vol. 168(C), pages 257-268.
    3. Küng, Lukas & Bütler, Thomas & Georges, Gil & Boulouchos, Konstantinos, 2019. "How much energy does a car need on the road?," Applied Energy, Elsevier, vol. 256(C).
    4. Davis, Brian A. & Figliozzi, Miguel A., 2013. "A methodology to evaluate the competitiveness of electric delivery trucks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 8-23.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. George Barjoveanu & Florenta Dinita & Carmen Teodosiu, 2022. "Aging Passenger Car Fleet Structure, Dynamics, and Environmental Performance Evaluation at the Regional Level by Life Cycle Assessment," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    2. Lukas Netzer & David Wöss & Thomas Märzinger & Werner Müller & Tobias Pröll, 2022. "Impact of an E-Highway on the Required Battery Capacities and Charging Infrastructure for Cargo Transport with E-Trucks on the Basis of a Real Use Case," Energies, MDPI, vol. 15(19), pages 1-16, September.
    3. Themistoklis Stamadianos & Nikolaos A. Kyriakakis & Magdalene Marinaki & Yannis Marinakis, 2023. "Routing Problems with Electric and Autonomous Vehicles: Review and Potential for Future Research," SN Operations Research Forum, Springer, vol. 4(2), pages 1-34, June.
    4. Giuseppe Di Luca & Gabriele Di Blasio & Alfredo Gimelli & Daniela Anna Misul, 2023. "Review on Battery State Estimation and Management Solutions for Next-Generation Connected Vehicles," Energies, MDPI, vol. 17(1), pages 1-34, December.
    5. Christoph Kern & Andreas Jess, 2021. "Reducing Global Greenhouse Gas Emissions to Meet Climate Targets—A Comprehensive Quantification and Reasonable Options," Energies, MDPI, vol. 14(17), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liimatainen, Heikki & van Vliet, Oscar & Aplyn, David, 2019. "The potential of electric trucks – An international commodity-level analysis," Applied Energy, Elsevier, vol. 236(C), pages 804-814.
    2. Xie, Yunkun & Li, Yangyang & Zhao, Zhichao & Dong, Hao & Wang, Shuqian & Liu, Jingping & Guan, Jinhuan & Duan, Xiongbo, 2020. "Microsimulation of electric vehicle energy consumption and driving range," Applied Energy, Elsevier, vol. 267(C).
    3. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    4. K. S. Reddy & S. Aravindhan & Tapas K. Mallick, 2017. "Techno-Economic Investigation of Solar Powered Electric Auto-Rickshaw for a Sustainable Transport System," Energies, MDPI, vol. 10(6), pages 1-15, May.
    5. Tharsis Teoh & Oliver Kunze & Chee-Chong Teo & Yiik Diew Wong, 2018. "Decarbonisation of Urban Freight Transport Using Electric Vehicles and Opportunity Charging," Sustainability, MDPI, vol. 10(9), pages 1-20, September.
    6. Stefano De Pinto & Pablo Camocardi & Christoforos Chatzikomis & Aldo Sorniotti & Francesco Bottiglione & Giacomo Mantriota & Pietro Perlo, 2020. "On the Comparison of 2- and 4-Wheel-Drive Electric Vehicle Layouts with Central Motors and Single- and 2-Speed Transmission Systems," Energies, MDPI, vol. 13(13), pages 1-24, June.
    7. Roel M. Post & Paul Buijs & Michiel A. J. uit het Broek & Jose A. Lopez Alvarez & Nick B. Szirbik & Iris F. A. Vis, 2018. "A solution approach for deriving alternative fuel station infrastructure requirements," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 592-607, September.
    8. Nan, Sirui & Tu, Ran & Li, Tiezhu & Sun, Jian & Chen, Haibo, 2022. "From driving behavior to energy consumption: A novel method to predict the energy consumption of electric bus," Energy, Elsevier, vol. 261(PA).
    9. Tannaz Jahaniaghdam & Amir Reza Mamdoohi & Salman Aghidi Kheyrabadi & Mehdi Mehryar & Francesco Ciari, 2023. "Preferences for Alternative Fuel Trucks among International Transport Companies," World, MDPI, vol. 4(4), pages 1-21, November.
    10. Huang, Hai-chao & He, Hong-di & Peng, Zhong-ren, 2024. "Urban-scale estimation model of carbon emissions for ride-hailing electric vehicles during operational phase," Energy, Elsevier, vol. 293(C).
    11. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    12. Feng, Zhanyu & Zhang, Jian & Jiang, Han & Yao, Xuejian & Qian, Yu & Zhang, Haiyan, 2024. "Energy consumption prediction strategy for electric vehicle based on LSTM-transformer framework," Energy, Elsevier, vol. 302(C).
    13. Soulios, V. & Loonen, R.C.G.M. & Metavitsiadis, V. & Hensen, J.L.M., 2018. "Computational performance analysis of overheating mitigation measures in parked vehicles," Applied Energy, Elsevier, vol. 231(C), pages 635-644.
    14. Li, Hai & Zheng, Peng & Zhang, Tingsheng & Zou, Yingquan & Pan, Yajia & Zhang, Zutao & Azam, Ali, 2021. "A high-efficiency energy regenerative shock absorber for powering auxiliary devices of new energy driverless buses," Applied Energy, Elsevier, vol. 295(C).
    15. Roberti, R. & Wen, M., 2016. "The Electric Traveling Salesman Problem with Time Windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 32-52.
    16. Kapetanović, Marko & Núñez, Alfredo & van Oort, Niels & Goverde, Rob M.P., 2021. "Reducing fuel consumption and related emissions through optimal sizing of energy storage systems for diesel-electric trains," Applied Energy, Elsevier, vol. 294(C).
    17. Wang, Hua & Zhao, De & Meng, Qiang & Ong, Ghim Ping & Lee, Der-Horng, 2020. "Network-level energy consumption estimation for electric vehicles considering vehicle and user heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 30-46.
    18. Yuan, Xinmei & Zhang, Chuanpu & Hong, Guokai & Huang, Xueqi & Li, Lili, 2017. "Method for evaluating the real-world driving energy consumptions of electric vehicles," Energy, Elsevier, vol. 141(C), pages 1955-1968.
    19. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    20. Cortés-Murcia, David L. & Prodhon, Caroline & Murat Afsar, H., 2019. "The electric vehicle routing problem with time windows, partial recharges and satellite customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 184-206.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:276:y:2020:i:c:s0306261920309752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.