IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v239y2019icp898-907.html
   My bibliography  Save this article

Effect of DC-DC voltage step-up converter impedance on thermoelectric energy harvester system design strategy

Author

Listed:
  • Watson, Thomas C.
  • Vincent, Joshua N.
  • Lee, Hohyun

Abstract

Conventional thermoelectric energy harvester design strategies often focus on improving the material property thermoelectric figure of merit (ZT); however, enhanced performance through improved materials cannot be achieved without optimized integration of subcomponents. The low voltage output from a thermoelectric module makes it challenging to design a practically usable wearable energy harvester. In addition to consideration of effective heat dissipation along with matching module geometry, a voltage needs to be boosted at a usable voltage value to utilize produced power. Using a DC to DC voltage step-up converter adds additional design complexity as the power cannot be harnessed at maximum power point of thermoelectric module due to input impedance requirement of the power conditioning circuit. Moreover, additional power loss occurs due to inherent voltage conversion inefficiency, which also depends on the harvesting voltage value. A recent design framework on wearable thermoelectric energy harvester assumed that a Maximum Power Point Tracking (MPPT) boost converter can be utilized for thermoelectric energy harvester systems, however it is unable to accurately determine the maximum power point during operation because of the transient nature of thermoelectric systems. Additionally, an MPPT circuit consumes power and adds complexity to the system design, which may not economically justify the use of such a circuit. This work proposes an encompassing thermoelectric system design framework for small scale energy harvesting using only state-of-the-art commercial products. Particularly, thermoelectric module geometry design is examined with the incorporation of a DC to DC voltage step-up converter without the use of MPPT. The framework can provide guidance for further development of subcomponents and materials, as well as system integration. An operational wearable energy harvester system was built using off-the-shelf components and demonstrated a usable power output which provides experimental evidence for the proposed design strategy.

Suggested Citation

  • Watson, Thomas C. & Vincent, Joshua N. & Lee, Hohyun, 2019. "Effect of DC-DC voltage step-up converter impedance on thermoelectric energy harvester system design strategy," Applied Energy, Elsevier, vol. 239(C), pages 898-907.
  • Handle: RePEc:eee:appene:v:239:y:2019:i:c:p:898-907
    DOI: 10.1016/j.apenergy.2019.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919302958
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pietrzyk, Kyle & Soares, Joseph & Ohara, Brandon & Lee, Hohyun, 2016. "Power generation modeling for a wearable thermoelectric energy harvester with practical limitations," Applied Energy, Elsevier, vol. 183(C), pages 218-228.
    2. Wang, Yancheng & Shi, Yaoguang & Mei, Deqing & Chen, Zichen, 2018. "Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer," Applied Energy, Elsevier, vol. 215(C), pages 690-698.
    3. Hyland, Melissa & Hunter, Haywood & Liu, Jie & Veety, Elena & Vashaee, Daryoosh, 2016. "Wearable thermoelectric generators for human body heat harvesting," Applied Energy, Elsevier, vol. 182(C), pages 518-524.
    4. Pietrzyk, Kyle & Ohara, Brandon & Watson, Thomas & Gee, Madison & Avalos, Daniel & Lee, Hohyun, 2016. "Thermoelectric module design strategy for solid-state refrigeration," Energy, Elsevier, vol. 114(C), pages 823-832.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lineykin, Simon & Maslah, Kareem & Kuperman, Alon, 2020. "Manufacturer-data-only-based modeling and optimized design of thermoelectric harvesters operating at low temperature gradients," Energy, Elsevier, vol. 213(C).
    2. Lv, Jin-Ran & Ma, Jin-Lei & Dai, Lu & Yin, Tao & He, Zhi-Zhu, 2022. "A high-performance wearable thermoelectric generator with comprehensive optimization of thermal resistance and voltage boosting conversion," Applied Energy, Elsevier, vol. 312(C).
    3. He, Min & Wang, Enhua & Zhang, Yuanyin & Zhang, Wen & Zhang, Fujun & Zhao, Changlu, 2020. "Performance analysis of a multilayer thermoelectric generator for exhaust heat recovery of a heavy-duty diesel engine," Applied Energy, Elsevier, vol. 274(C).
    4. He, Zhi-Zhu, 2020. "A coupled electrical-thermal impedance matching model for design optimization of thermoelectric generator," Applied Energy, Elsevier, vol. 269(C).
    5. Song, Gyeong Ju & Cho, Jae Yong & Kim, Kyung-Bum & Ahn, Jung Hwan & Song, Yewon & Hwang, Wonseop & Hong, Seong Do & Sung, Tae Hyun, 2019. "Development of a pavement block piezoelectric energy harvester for self-powered walkway applications," Applied Energy, Elsevier, vol. 256(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sijing Zhu & Zheng Fan & Baoquan Feng & Runze Shi & Zexin Jiang & Ying Peng & Jie Gao & Lei Miao & Kunihito Koumoto, 2022. "Review on Wearable Thermoelectric Generators: From Devices to Applications," Energies, MDPI, vol. 15(9), pages 1-27, May.
    2. Shen, Rong & Gou, Xiaolong & Xu, Haoyu & Qiu, Kuanrong, 2017. "Dynamic performance analysis of a cascaded thermoelectric generator," Applied Energy, Elsevier, vol. 203(C), pages 808-815.
    3. Kim, Choong Sun & Lee, Gyu Soup & Choi, Hyeongdo & Kim, Yong Jun & Yang, Hyeong Man & Lim, Se Hwan & Lee, Sang-Gug & Cho, Byung Jin, 2018. "Structural design of a flexible thermoelectric power generator for wearable applications," Applied Energy, Elsevier, vol. 214(C), pages 131-138.
    4. Yuan, Jinfeng & Zhu, Rong, 2020. "A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator," Applied Energy, Elsevier, vol. 271(C).
    5. Yuan, Zicheng & Tang, Xiaobin & Xu, Zhiheng & Li, Junqin & Chen, Wang & Liu, Kai & Liu, Yunpeng & Zhang, Zhengrong, 2018. "Screen-printed radial structure micro radioisotope thermoelectric generator," Applied Energy, Elsevier, vol. 225(C), pages 746-754.
    6. Han, Minglei & Yang, Xu & Wang, Dong F. & Jiang, Lei & Song, Wei & Ono, Takahito, 2022. "A mosquito-inspired self-adaptive energy harvester for multi-directional vibrations," Applied Energy, Elsevier, vol. 315(C).
    7. Bogdan Dziadak & Łukasz Makowski & Mariusz Kucharek & Adam Jóśko, 2023. "Energy Harvesting for Wearable Sensors and Body Area Network Nodes," Energies, MDPI, vol. 16(4), pages 1-30, February.
    8. Lee, Gyusoup & Kim, Choong Sun & Kim, Seongho & Kim, Yong Jun & Choi, Hyeongdo & Cho, Byung Jin, 2019. "Flexible heatsink based on a phase-change material for a wearable thermoelectric generator," Energy, Elsevier, vol. 179(C), pages 12-18.
    9. Sargolzaeiaval, Yasaman & Padmanabhan Ramesh, Viswanath & Neumann, Taylor V. & Misra, Veena & Vashaee, Daryoosh & Dickey, Michael D. & Öztürk, Mehmet C., 2020. "Flexible thermoelectric generators for body heat harvesting – Enhanced device performance using high thermal conductivity elastomer encapsulation on liquid metal interconnects," Applied Energy, Elsevier, vol. 262(C).
    10. Fan, Zeng & Zhang, Yaoyun & Pan, Lujun & Ouyang, Jianyong & Zhang, Qian, 2021. "Recent developments in flexible thermoelectrics: From materials to devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Chen, Jiangfan & Fang, Zheng & Azam, Ali & Wu, Xiaoping & Zhang, Zutao & Lu, Linhai & Li, Dongyang, 2023. "An energy self-circulation system based on the wearable thermoelectric harvester for ART driver monitoring," Energy, Elsevier, vol. 262(PA).
    12. Park, Hwanjoo & Eom, Yoomin & Lee, Dongkeon & Kim, Jiyong & Kim, Hoon & Park, Gimin & Kim, Woochul, 2019. "High power output based on watch-strap-shaped body heat harvester using bulk thermoelectric materials," Energy, Elsevier, vol. 187(C).
    13. Lv, Jin-Ran & Ma, Jin-Lei & Dai, Lu & Yin, Tao & He, Zhi-Zhu, 2022. "A high-performance wearable thermoelectric generator with comprehensive optimization of thermal resistance and voltage boosting conversion," Applied Energy, Elsevier, vol. 312(C).
    14. Nozariasbmarz, Amin & Collins, Henry & Dsouza, Kelvin & Polash, Mobarak Hossain & Hosseini, Mahshid & Hyland, Melissa & Liu, Jie & Malhotra, Abhishek & Ortiz, Francisco Matos & Mohaddes, Farzad & Rame, 2020. "Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems," Applied Energy, Elsevier, vol. 258(C).
    15. Hasan, Mohammed Nazibul & Nayan, Nafarizal & Nafea, Marwan & Muthalif, Asan G.A. & Mohamed Ali, Mohamed Sultan, 2022. "Novel structural design of wearable thermoelectric generator with vertically oriented thermoelements," Energy, Elsevier, vol. 259(C).
    16. Ghomian, Taher & Kizilkaya, Orhan & Choi, Jin-Woo, 2018. "Lead sulfide colloidal quantum dot photovoltaic cell for energy harvesting from human body thermal radiation," Applied Energy, Elsevier, vol. 230(C), pages 761-768.
    17. Md Maruf Hossain Shuvo & Twisha Titirsha & Nazmul Amin & Syed Kamrul Islam, 2022. "Energy Harvesting in Implantable and Wearable Medical Devices for Enduring Precision Healthcare," Energies, MDPI, vol. 15(20), pages 1-50, October.
    18. Mai, Van-Phung & Yang, Ruey-Jen, 2020. "Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect," Applied Energy, Elsevier, vol. 274(C).
    19. Chetty, Raju & Nagase, Kazuo & Aihara, Makoto & Jood, Priyanka & Takazawa, Hiroyuki & Ohta, Michihiro & Yamamoto, Atsushi, 2020. "Mechanically durable thermoelectric power generation module made of Ni-based alloy as a reference for reliable testing," Applied Energy, Elsevier, vol. 260(C).
    20. Liu, Hai-Bo & Wang, Shuo-Lin & Yang, Yan-Ru & Chen, Wei-Hsin & Wang, Xiao-Dong, 2020. "Theoretical analysis of performance of variable cross-section thermoelectric generators: Effects of shape factor and thermal boundary conditions," Energy, Elsevier, vol. 201(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:239:y:2019:i:c:p:898-907. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.