IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i11p8792-d1159175.html
   My bibliography  Save this article

4E Transient Analysis of a Solar-Hybrid Gas-Turbine Cycle Equipped with Heliostat and MED

Author

Listed:
  • Ramin Ghasemiasl

    (Department of Mechanical Engineering, West Tehran Branch, Islamic Azad University, Tehran 14687-63785, Iran)

  • Hossein Dehghanizadeh

    (Department of Mechanical Engineering, West Tehran Branch, Islamic Azad University, Tehran 14687-63785, Iran)

  • Mohammad Amin Javadi

    (Department of Mechanical Engineering, West Tehran Branch, Islamic Azad University, Tehran 14687-63785, Iran)

  • Mohammad Abdolmaleki

    (Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
    KASMA, Sharif Advanced Technologies Center, Tehran 11155-9161, Iran)

Abstract

The current study investigates a cogeneration cycle of power and freshwater integrated with a solar system. The solar system is of the heliostat type, which is considered to preheat the inlet air in the combustion chamber of a 25-MW gas turbine. The waste heat of the turbine output stream is used to produce freshwater. Parameters such as the ambient temperature and solar irradiance significantly affect the system’s performance; hence, all analyses, including those pertaining to energy, exergy, economics, and environment, were conducted transiently, with a one-hour time step throughout the year so that the impacts of these effective parameters could be examined. Besides the analysis assuming a constant mass flow rate for the air entering the compressor, the calculations were repeated with the assumption of a constant volumetric flow rate to evaluate the cycle in the same conditions as those of natural gas power plants. Given the constant volumetric flow rate, for every 10-degree increase in temperature, the compressor power consumption decreased by approximately 2%. Moreover, a sensitivity analysis of the cycle performance in terms of ambient temperature was performed, and the corresponding results are presented. Finally, some correlations are presented to estimate variations in compressor power consumption and net turbine power due to temperature variations. The results demonstrate that in Bushehr, Iran, every one-degree increase in ambient temperature leads to an approximately 0.67 percentage decrease in net-generated power. In the end, the performance of the cycle was investigated under climatic conditions and solar irradiation intensities in several cities in Iran and some cities in different countries in which heliostat power plants have already been established. The results obtained in these cities were compared; it was concluded that the lowest annual cost of electricity generation is related to Isfahan in Iran, which reduces the cost of electricity generation by more than 20% (2.32 Cents/kWh) compared to the base cycle.

Suggested Citation

  • Ramin Ghasemiasl & Hossein Dehghanizadeh & Mohammad Amin Javadi & Mohammad Abdolmaleki, 2023. "4E Transient Analysis of a Solar-Hybrid Gas-Turbine Cycle Equipped with Heliostat and MED," Sustainability, MDPI, vol. 15(11), pages 1-26, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8792-:d:1159175
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/11/8792/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/11/8792/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anvari, Simin & Mahian, Omid & Taghavifar, Hadi & Wongwises, Somchai & Desideri, Umberto, 2020. "4E analysis of a modified multigeneration system designed for power, heating/cooling, and water desalination," Applied Energy, Elsevier, vol. 270(C).
    2. You, Huailiang & Han, Jitian & Liu, Yang & Chen, Changnian & Ge, Yi, 2020. "4E analysis and multi-objective optimization of a micro poly-generation system based on SOFC/MGT/MED and organic steam ejector refrigerator," Energy, Elsevier, vol. 206(C).
    3. Wang, Ruilin & Sun, Jie & Hong, Hui & Jin, Hongguang, 2018. "Comprehensive evaluation for different modes of solar-aided coal-fired power generation system under common framework regarding both coal-savability and efficiency-promotability," Energy, Elsevier, vol. 143(C), pages 151-167.
    4. Giostri, A. & Binotti, M. & Sterpos, C. & Lozza, G., 2020. "Small scale solar tower coupled with micro gas turbine," Renewable Energy, Elsevier, vol. 147(P1), pages 570-583.
    5. Kerme, Esa Dube & Orfi, Jamel & Fung, Alan S. & Salilih, Elias M. & Khan, Salah Ud-Din & Alshehri, Hassan & Ali, Emad & Alrasheed, Mohammed, 2020. "Energetic and exergetic performance analysis of a solar driven power, desalination and cooling poly-generation system," Energy, Elsevier, vol. 196(C).
    6. Ahmadi, Pouria & Dincer, Ibrahim & Rosen, Marc A., 2011. "Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants," Energy, Elsevier, vol. 36(10), pages 5886-5898.
    7. Ahmadi, P. & Fakhari, I. & Rosen, Marc A., 2022. "A comprehensive approach for tri-objective optimization of a novel advanced energy system with gas turbine prime mover, ejector cooling system and multi-effect desalination," Energy, Elsevier, vol. 254(PC).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pietrasanta, Ariana M. & Mussati, Sergio F. & Aguirre, Pio A. & Morosuk, Tatiana & Mussati, Miguel C., 2022. "Optimization of a multi-generation power, desalination, refrigeration and heating system," Energy, Elsevier, vol. 238(PB).
    2. Ran, Peng & Ou, YiFan & Zhang, ChunYu & Chen, YuTong, 2024. "Energy, exergy, economic, and life cycle environmental analysis of a novel biogas-fueled solid oxide fuel cell hybrid power generation system assisted with solar thermal energy storage unit," Applied Energy, Elsevier, vol. 358(C).
    3. Ghorbani, Sobhan & Deymi-Dashtebayaz, Mahdi & Dadpour, Daryoush & Delpisheh, Mostafa, 2023. "Parametric study and optimization of a novel geothermal-driven combined cooling, heating, and power (CCHP) system," Energy, Elsevier, vol. 263(PF).
    4. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Comparative exergoeconomics of power utilities: Air-cooled gas turbine cycle and combined cycle configurations," Energy, Elsevier, vol. 139(C), pages 42-51.
    5. Anvari, Simin & Mahian, Omid & Taghavifar, Hadi & Wongwises, Somchai & Desideri, Umberto, 2020. "4E analysis of a modified multigeneration system designed for power, heating/cooling, and water desalination," Applied Energy, Elsevier, vol. 270(C).
    6. Wang, Zhen & Duan, Liqiang & Zhang, Zuxian, 2022. "Multi-objective optimization of gas turbine combined cycle system considering environmental damage cost of pollution emissions," Energy, Elsevier, vol. 261(PA).
    7. Wang, Ruilin & Qu, Wanjun & Hong, Hui & Sun, Jie & Jin, Hongguang, 2018. "Experimental performance of 300 kWth prototype of parabolic trough collector with rotatable axis and irreversibility analysis," Energy, Elsevier, vol. 161(C), pages 595-609.
    8. Khaljani, M. & Khoshbakhti Saray, R. & Bahlouli, K., 2015. "Thermodynamic and thermoeconomic optimization of an integrated gas turbine and organic Rankine cycle," Energy, Elsevier, vol. 93(P2), pages 2136-2145.
    9. Khojaste Effatpanah, Saeed & Rahbari, Hamid Reza & Ahmadi, Mohammad H. & Farzaneh, Ali, 2023. "Green hydrogen production and utilization in a novel SOFC/GT-based zero-carbon cogeneration system: A thermodynamic evaluation," Renewable Energy, Elsevier, vol. 219(P2).
    10. Bakhshmand, Sina Kazemi & Saray, Rahim Khoshbakhti & Bahlouli, Keyvan & Eftekhari, Hajar & Ebrahimi, Afshin, 2015. "Exergoeconomic analysis and optimization of a triple-pressure combined cycle plant using evolutionary algorithm," Energy, Elsevier, vol. 93(P1), pages 555-567.
    11. Primabudi, Eko & Morosuk, Tatiana & Tsatsaronis, George, 2019. "Multi-objective optimization of propane pre-cooled mixed refrigerant (C3MR) LNG process," Energy, Elsevier, vol. 185(C), pages 492-504.
    12. Kong, Xue & Wang, Hongye & Li, Nan & Mu, Hailin, 2022. "Multi-objective optimal allocation and performance evaluation for energy storage in energy systems," Energy, Elsevier, vol. 253(C).
    13. Afzali, Sayyed Faridoddin & Mahalec, Vladimir, 2017. "Optimal design, operation and analytical criteria for determining optimal operating modes of a CCHP with fired HRSG, boiler, electric chiller and absorption chiller," Energy, Elsevier, vol. 139(C), pages 1052-1065.
    14. Sanusi, Yinka S. & Mokheimer, Esmail M.A., 2019. "Thermo-economic optimization of hydrogen production in a membrane-SMR integrated to ITM-oxy-combustion plant using genetic algorithm," Applied Energy, Elsevier, vol. 235(C), pages 164-176.
    15. Alobaid, Falah & Karner, Karl & Belz, Jörg & Epple, Bernd & Kim, Hyun-Gee, 2014. "Numerical and experimental study of a heat recovery steam generator during start-up procedure," Energy, Elsevier, vol. 64(C), pages 1057-1070.
    16. Charalampos Michalakakis & Jeremy Fouillou & Richard C. Lupton & Ana Gonzalez Hernandez & Jonathan M. Cullen, 2021. "Calculating the chemical exergy of materials," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 274-287, April.
    17. Mehrabian, M.J. & Khoshgoftar Manesh, M.H., 2023. "4E, risk, diagnosis, and availability evaluation for optimal design of a novel biomass-solar-wind driven polygeneration system," Renewable Energy, Elsevier, vol. 219(P2).
    18. Teymouri, Matin & Sadeghi, Shayan & Moghimi, Mahdi & Ghandehariun, Samane, 2021. "3E analysis and optimization of an innovative cogeneration system based on biomass gasification and solar photovoltaic thermal plant," Energy, Elsevier, vol. 230(C).
    19. Naserabad, S. Nikbakht & Mehrpanahi, A. & Ahmadi, G., 2018. "Multi-objective optimization of HRSG configurations on the steam power plant repowering specifications," Energy, Elsevier, vol. 159(C), pages 277-293.
    20. Ahmadi, P. & Fakhari, I. & Rosen, Marc A., 2022. "A comprehensive approach for tri-objective optimization of a novel advanced energy system with gas turbine prime mover, ejector cooling system and multi-effect desalination," Energy, Elsevier, vol. 254(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:11:p:8792-:d:1159175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.