IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v161y2016icp48-74.html
   My bibliography  Save this article

Least-cost options for integrating intermittent renewables in low-carbon power systems

Author

Listed:
  • Brouwer, Anne Sjoerd
  • van den Broek, Machteld
  • Zappa, William
  • Turkenburg, Wim C.
  • Faaij, André

Abstract

Large power sector CO2 emission reductions are needed to meet long-term climate change targets. Intermittent renewable energy sources (intermittent-RES) such as wind and solar PV can be a key component of the resulting low-carbon power systems. Their intermittency will require more flexibility from the rest of the power system to maintain system stability. In this study, the efficacy of five complementary options to integrate intermittent-RES at the lowest cost is evaluated with the PLEXOS hourly power system simulation tool for Western Europe in the year 2050. Three scenarios to reduce CO2 emissions by 96% and maintain system reliability are investigated: 40%, 60% and 80% of annual power generation by RES. This corresponds to 22%, 41% and 59% of annual power generation by intermittent-RES. This study shows that higher penetration of RES will increase the total system costs: they increase by 12% between the 40% and 80% RES scenarios. Key drivers are the relatively high investment costs and integration costs of intermittent-RES. It is found that total system costs can be reduced by: (1) Demand response (DR) (2–3% reduction compared to no DR deployment); (2) natural gas-fired power plants with and without Carbon Capture and Storage (CCS) (12% reduction from mainly replacing RES power generation between the 80% and 40% RES scenarios); (3) increased interconnection capacity (0–1% reduction compared to the current capacity); (4) curtailment (2% reduction in 80% RES scenario compared to no curtailment); (5) electricity storage increases total system costs in all scenarios (0.1–3% increase compared to only current storage capacity). The charging costs and investment costs make storage relatively expensive, even projecting cost reductions of 40% for Compressed Air Energy Storage (CAES) and 70% for batteries compared to 2012. All scenarios are simulated as energy only markets, and experience a “revenue gap” for both complementary options and other power generators: only curtailment and DR are profitable due to their low cost. The revenue gap becomes progressively more pronounced in the 60% and 80% RES scenarios, as the low marginal costs of RES reduce electricity prices.

Suggested Citation

  • Brouwer, Anne Sjoerd & van den Broek, Machteld & Zappa, William & Turkenburg, Wim C. & Faaij, André, 2016. "Least-cost options for integrating intermittent renewables in low-carbon power systems," Applied Energy, Elsevier, vol. 161(C), pages 48-74.
  • Handle: RePEc:eee:appene:v:161:y:2016:i:c:p:48-74
    DOI: 10.1016/j.apenergy.2015.09.090
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915012167
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.09.090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Cramton & Axel Ockenfels, 2012. "Ökonomik und Design von Kapazitätsmärkten im Stromsektor," Papers of Peter Cramton 11cocaps, University of Maryland, Department of Economics - Peter Cramton, revised 2012.
    2. Luca Petricca & Per Ohlckers & Xuyuan Chen, 2013. "The Future of Energy Storage Systems," Chapters, in: Ahmed F. Zobaa (ed.), Energy Storage - Technologies and Applications, IntechOpen.
    3. Dominique Finon, 2010. "The Efficiency of Policy Instruments for the Deployment of CCS as a Large-sized Technology," Working Papers EPRG 1035, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    4. Gils, Hans Christian, 2014. "Assessment of the theoretical demand response potential in Europe," Energy, Elsevier, vol. 67(C), pages 1-18.
    5. Awerbuch, Shimon & Yang, Spencer, 2007. "Efficient electricity generating portfolios for Europe: maximising energy security and climate change mitigation," EIB Papers 7/2007, European Investment Bank, Economics Department.
    6. Dupont, B. & Dietrich, K. & De Jonghe, C. & Ramos, A. & Belmans, R., 2014. "Impact of residential demand response on power system operation: A Belgian case study," Applied Energy, Elsevier, vol. 122(C), pages 1-10.
    7. Cochran, Jaquelin & Mai, Trieu & Bazilian, Morgan, 2014. "Meta-analysis of high penetration renewable energy scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 246-253.
    8. Nagl, Stephan & Fürsch, Michaela & Paulus, Moritz & Richter, Jan & Trüby, Johannes & Lindenberger, Dietmar, 2011. "Energy policy scenarios to reach challenging climate protection targets in the German electricity sector until 2050," Utilities Policy, Elsevier, vol. 19(3), pages 185-192.
    9. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    10. Hirth, Lion, 2013. "The market value of variable renewables," Energy Economics, Elsevier, vol. 38(C), pages 218-236.
    11. Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
    12. Brouwer, Anne Sjoerd & van den Broek, Machteld & Seebregts, Ad & Faaij, André, 2015. "Operational flexibility and economics of power plants in future low-carbon power systems," Applied Energy, Elsevier, vol. 156(C), pages 107-128.
    13. De Jonghe, Cedric & Delarue, Erik & Belmans, Ronnie & D'haeseleer, William, 2011. "Determining optimal electricity technology mix with high level of wind power penetration," Applied Energy, Elsevier, vol. 88(6), pages 2231-2238, June.
    14. Paulus, Moritz & Borggrefe, Frieder, 2011. "The potential of demand-side management in energy-intensive industries for electricity markets in Germany," Applied Energy, Elsevier, vol. 88(2), pages 432-441, February.
    15. Nuytten, Thomas & Claessens, Bert & Paredis, Kristof & Van Bael, Johan & Six, Daan, 2013. "Flexibility of a combined heat and power system with thermal energy storage for district heating," Applied Energy, Elsevier, vol. 104(C), pages 583-591.
    16. Ferreira, Helder Lopes & Garde, Raquel & Fulli, Gianluca & Kling, Wil & Lopes, Joao Pecas, 2013. "Characterisation of electrical energy storage technologies," Energy, Elsevier, vol. 53(C), pages 288-298.
    17. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    18. Dusonchet, L. & Telaretti, E., 2015. "Comparative economic analysis of support policies for solar PV in the most representative EU countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 986-998.
    19. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    20. Verzijlbergh, Remco & Brancucci Martínez-Anido, Carlo & Lukszo, Zofia & de Vries, Laurens, 2014. "Does controlled electric vehicle charging substitute cross-border transmission capacity?," Applied Energy, Elsevier, vol. 120(C), pages 169-180.
    21. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khanna, Tarun M., 2022. "Using agricultural demand for reducing costs of renewable energy integration in India," Energy, Elsevier, vol. 254(PC).
    2. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    3. Cruz, Marco R.M. & Fitiwi, Desta Z. & Santos, Sérgio F. & Catalão, João P.S., 2018. "A comprehensive survey of flexibility options for supporting the low-carbon energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 338-353.
    4. Pietzcker, Robert C. & Ueckerdt, Falko & Carrara, Samuel & de Boer, Harmen Sytze & Després, Jacques & Fujimori, Shinichiro & Johnson, Nils & Kitous, Alban & Scholz, Yvonne & Sullivan, Patrick & Ludere, 2017. "System integration of wind and solar power in integrated assessment models: A cross-model evaluation of new approaches," Energy Economics, Elsevier, vol. 64(C), pages 583-599.
    5. Cloete, Schalk & Hirth, Lion, 2020. "Flexible power and hydrogen production: Finding synergy between CCS and variable renewables," Energy, Elsevier, vol. 192(C).
    6. Verzijlbergh, R.A. & De Vries, L.J. & Dijkema, G.P.J. & Herder, P.M., 2017. "Institutional challenges caused by the integration of renewable energy sources in the European electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 660-667.
    7. Hirth, Lion, 2016. "The benefits of flexibility: The value of wind energy with hydropower," Applied Energy, Elsevier, vol. 181(C), pages 210-223.
    8. Li, Yanxue & Zhang, Xiaoyi & Gao, Weijun & Ruan, Yingjun, 2020. "Capacity credit and market value analysis of photovoltaic integration considering grid flexibility requirements," Renewable Energy, Elsevier, vol. 159(C), pages 908-919.
    9. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    10. Ruhnau, Oliver & Hirth, Lion & Praktiknjo, Aaron, 2020. "Heating with wind: Economics of heat pumps and variable renewables," Energy Economics, Elsevier, vol. 92(C).
    11. Michael Schoepf & Martin Weibelzahl & Lisa Nowka, 2018. "The Impact of Substituting Production Technologies on the Economic Demand Response Potential in Industrial Processes," Energies, MDPI, vol. 11(9), pages 1-13, August.
    12. Neda Hajibandeh & Mehdi Ehsan & Soodabeh Soleymani & Miadreza Shafie-khah & João P. S. Catalão, 2017. "The Mutual Impact of Demand Response Programs and Renewable Energies: A Survey," Energies, MDPI, vol. 10(9), pages 1-18, September.
    13. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    14. Soria, Rafael & Portugal-Pereira, Joana & Szklo, Alexandre & Milani, Rodrigo & Schaeffer, Roberto, 2015. "Hybrid concentrated solar power (CSP)–biomass plants in a semiarid region: A strategy for CSP deployment in Brazil," Energy Policy, Elsevier, vol. 86(C), pages 57-72.
    15. Reichenberg, Lina & Hedenus, Fredrik & Odenberger, Mikael & Johnsson, Filip, 2018. "The marginal system LCOE of variable renewables – Evaluating high penetration levels of wind and solar in Europe," Energy, Elsevier, vol. 152(C), pages 914-924.
    16. Lechl, Michael & Fürmann, Tim & de Meer, Hermann & Weidlich, Anke, 2023. "A review of models for energy system flexibility requirements and potentials using the new FLEXBLOX taxonomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    17. Zhang, Yang & Campana, Pietro Elia & Yang, Ying & Stridh, Bengt & Lundblad, Anders & Yan, Jinyue, 2018. "Energy flexibility from the consumer: Integrating local electricity and heat supplies in a building," Applied Energy, Elsevier, vol. 223(C), pages 430-442.
    18. van Zuijlen, Bas & Zappa, William & Turkenburg, Wim & van der Schrier, Gerard & van den Broek, Machteld, 2019. "Cost-optimal reliable power generation in a deep decarbonisation future," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    20. Romeiro, Diogo Lisbona & Almeida, Edmar Luiz Fagundes de & Losekann, Luciano, 2020. "Systemic value of electricity sources – What we can learn from the Brazilian experience?," Energy Policy, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:161:y:2016:i:c:p:48-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.