IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p385-d200821.html
   My bibliography  Save this article

Numerical Simulation and Optimization of Waste Heat Recovery in a Sinter Vertical Tank

Author

Listed:
  • Chenyi Xu

    (School of energy and power engineering, Huazhong university of science and technology, Wuhan 430074, China)

  • Zhichun Liu

    (School of energy and power engineering, Huazhong university of science and technology, Wuhan 430074, China)

  • Shicheng Wang

    (School of energy and power engineering, Huazhong university of science and technology, Wuhan 430074, China)

  • Wei Liu

    (School of energy and power engineering, Huazhong university of science and technology, Wuhan 430074, China)

Abstract

In this paper, a two-dimensional steady model is established to investigate the gas-solid heat transfer in a sinter vertical tank based on the porous media theory and the local thermal non-equilibrium model. The influences of the air flow rate, sinter flow rate, and sinter particle diameter on the gas-solid heat transfer process are investigated numerically. In addition, exergy destruction minimization is used as a new principle for heat transfer enhancement. Furthermore, a multi-objective genetic algorithm based on a Back Propagation (BP) neural network is applied to obtain a combination of each parameter for a more comprehensive performance, with the exergy destruction caused by heat transfer and the one caused by fluid flow as the two objectives. The results show that the heat dissipation and power consumption both gradually increase with an increase of the air mass flow rate. Additionally, the increase of the sinter flow rate results in a decrease of the heat dissipation and an increase of the power consumption. In addition, both heat dissipation and power consumption gradually decrease with an increase of the sinter particle diameter. For the given structure of the vertical tank, the optimal operating parameters are 2.99 kg/s, 0.61 kg/s, and 32.8 mm for the air flow rate, sinter flow rate, and sinter diameter, respectively.

Suggested Citation

  • Chenyi Xu & Zhichun Liu & Shicheng Wang & Wei Liu, 2019. "Numerical Simulation and Optimization of Waste Heat Recovery in a Sinter Vertical Tank," Energies, MDPI, vol. 12(3), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:385-:d:200821
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/385/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/385/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Henan & Ge, Ya & Liu, Wei & Liu, Zhichun, 2019. "Geometric optimization of two-stage thermoelectric generator using genetic algorithms and thermodynamic analysis," Energy, Elsevier, vol. 171(C), pages 37-48.
    2. Ge, Ya & Liu, Zhichun & Sun, Henan & Liu, Wei, 2018. "Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm," Energy, Elsevier, vol. 147(C), pages 1060-1069.
    3. Feng, Jun-sheng & Dong, Hui & Gao, Jian-ye & Liu, Jing-yu & Liang, Kai, 2016. "Exergy transfer characteristics of gas-solid heat transfer through sinter bed layer in vertical tank," Energy, Elsevier, vol. 111(C), pages 154-164.
    4. Liu, Yan & Yang, Jian & Wang, Jin & Cheng, Zhi-long & Wang, Qiu-wang, 2014. "Energy and exergy analysis for waste heat cascade utilization in sinter cooling bed," Energy, Elsevier, vol. 67(C), pages 370-380.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Wenqiang & Wang, Qiang & Zhou, Yue & Wu, Jianzhong, 2020. "Material and energy flows of the iron and steel industry: Status quo, challenges and perspectives," Applied Energy, Elsevier, vol. 268(C).
    2. Francesco Calise & Maria Vicidomini & Mário Costa & Qiuwang Wang & Poul Alberg Østergaard & Neven Duić, 2019. "Toward an Efficient and Sustainable Use of Energy in Industries and Cities," Energies, MDPI, vol. 12(16), pages 1-28, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shicheng Wang & Chenyi Xu & Wei Liu & Zhichun Liu, 2019. "Numerical Study on Heat Transfer Performance in Packed Bed," Energies, MDPI, vol. 12(3), pages 1-22, January.
    2. Ge, Ya & Lin, Yousheng & He, Qing & Wang, Wenhao & Chen, Jiechao & Huang, Si-Min, 2021. "Geometric optimization of segmented thermoelectric generators for waste heat recovery systems using genetic algorithm," Energy, Elsevier, vol. 233(C).
    3. Zude Cheng & Haitao Wang & Junsheng Feng & Yongfang Xia & Hui Dong, 2021. "Energy and Exergy Efficiency Analysis of Fluid Flow and Heat Transfer in Sinter Vertical Cooler," Energies, MDPI, vol. 14(15), pages 1-18, July.
    4. Zheng, Ying & Cai, Jiu-ju & Dong, Hui & Feng, Jun-sheng & Liu, Jing-yu, 2019. "Experimental investigation of volumetric exergy transfer coefficient in vertical moving bed for sinter waste heat recovery," Energy, Elsevier, vol. 167(C), pages 428-439.
    5. Jing-Hui Meng & Hao-Chi Wu & Tian-Hu Wang, 2019. "Optimization of Two-Stage Combined Thermoelectric Devices by a Three-Dimensional Multi-Physics Model and Multi-Objective Genetic Algorithm," Energies, MDPI, vol. 12(14), pages 1-24, July.
    6. Maduabuchi, Chika, 2022. "Thermo-mechanical optimization of thermoelectric generators using deep learning artificial intelligence algorithms fed with verified finite element simulation data," Applied Energy, Elsevier, vol. 315(C).
    7. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    8. Wang, Xi & Henshaw, Paul & Ting, David S.-K., 2021. "Exergoeconomic analysis for a thermoelectric generator using mutation particle swarm optimization (M-PSO)," Applied Energy, Elsevier, vol. 294(C).
    9. Shu, Gequn & Ma, Xiaonan & Tian, Hua & Yang, Haoqi & Chen, Tianyu & Li, Xiaoya, 2018. "Configuration optimization of the segmented modules in an exhaust-based thermoelectric generator for engine waste heat recovery," Energy, Elsevier, vol. 160(C), pages 612-624.
    10. Pahlevaninezhad, Masoud & Davazdah Emami, Mohsen & Panjepour, Masoud, 2014. "The effects of kinetic parameters on combustion characteristics in a sintering bed," Energy, Elsevier, vol. 73(C), pages 160-176.
    11. Chen, Wei-Hsin & Wang, Chi-Ming & Lee, Da-Sheng & Kwon, Eilhann E. & Ashokkumar, Veeramuthu & Culaba, Alvin B., 2022. "Optimization design by evolutionary computation for minimizing thermal stress of a thermoelectric generator with varied numbers of square pin fins," Applied Energy, Elsevier, vol. 314(C).
    12. Sahoo, Rashmi Rekha & Karana, Dhruv Raj, 2020. "Effect of design shape factor on exergonic performance of a new modified extended-tapering segmented thermoelectric generator system," Energy, Elsevier, vol. 200(C).
    13. Chen, Lingen & Lorenzini, Giulio, 2023. "Heating load, COP and exergetic efficiency optimizations for TEG-TEH combined thermoelectric device with Thomson effect and external heat transfer," Energy, Elsevier, vol. 270(C).
    14. Shi, Zijie & Zhang, Kai & Jiang, Kaiyu & Li, Haoran & Ye, Peiliang & Yang, Haibin & Mahian, Omid, 2023. "Maximizing energy generation: A study of radiative cooling-based thermoelectric power devices," Energy, Elsevier, vol. 274(C).
    15. Fan, Xiaoyu & Ji, Wei & Li, Junxian & Gao, Zhaozhao & Chen, Liubiao & Wang, Junjie, 2024. "Advancing liquid air energy storage with moving packed bed: Development and analysis from components to system level," Applied Energy, Elsevier, vol. 355(C).
    16. Xu, Aoqi & Xie, Changjun & Xie, Liping & Zhu, Wenchao & Xiong, Binyu & Gooi, Hoay Beng, 2024. "Performance prediction and optimization of annular thermoelectric generators based on a comprehensive surrogate model," Energy, Elsevier, vol. 290(C).
    17. Yusuf, Aminu & Ballikaya, Sedat, 2022. "Electrical, thermomechanical and cost analyses of a low-cost thermoelectric generator," Energy, Elsevier, vol. 241(C).
    18. Ye-Qi Zhang & Jiao Sun & Guang-Xu Wang & Tian-Hu Wang, 2022. "Advantage of a Thermoelectric Generator with Hybridization of Segmented Materials and Irregularly Variable Cross-Section Design," Energies, MDPI, vol. 15(8), pages 1-18, April.
    19. Bhattacharjee, Debraj & Ghosh, Tamal & Bhola, Prabha & Martinsen, Kristian & Dan, Pranab K., 2019. "Data-driven surrogate assisted evolutionary optimization of hybrid powertrain for improved fuel economy and performance," Energy, Elsevier, vol. 183(C), pages 235-248.
    20. Sun, Henan & Ge, Ya & Liu, Wei & Liu, Zhichun, 2019. "Geometric optimization of two-stage thermoelectric generator using genetic algorithms and thermodynamic analysis," Energy, Elsevier, vol. 171(C), pages 37-48.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:385-:d:200821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.