IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v263y2020ics0306261920301318.html
   My bibliography  Save this article

Reservoir formation damage during hydrate dissociation in sand-clay sediment from Qilian Mountain permafrost, China

Author

Listed:
  • Wang, Yi
  • Pan, Mengdi
  • Mayanna, Sathish
  • Schleicher, Anja M.
  • Spangenberg, Erik
  • Schicks, Judith M.

Abstract

Permeability is known as a key factor affecting the gas production effectiveness from the natural gas hydrate-bearing reservoir. We studied the permeability behavior of natural clayey sand core samples from a natural hydrate-bearing reservoir in the Qilian Mountain permafrost before and after hydrate formation, as well as after hydrate decomposition. We found a substantially lower permeability after hydrate decomposition and assumed a formation damage process involving fines mobilization, migration and deposition at pore throats. The assumption was proved by SEM analysis of the filter paper separating the sample and the end caps containing the fluid ports. The analysis showed fines trapped in the paper from the outlet side. Fines migration and resulting formation damage is known from enhanced oil recovery by low salinity water flooding, but was unexpected for hydrate decomposition. The underlying mechanism was identified by a series of different permeability tests. The results indicate that fresh water released from the hydrate dissociation causes the fines mobilization, migration and redeposition at pore throats leading to the observed permeability decrease. Obviously the large volume of released methane gas displaces the remaining saline water and separates it from the fresh water released from the hydrate. The fresh water in contact with parts of the grain framework causes the detachment of clay particles by increased electrostatic forces and clay swelling, if swellable clays are present. This is an important mechanism that has to be taken into account in the planning of gas production from low-permeability clayey hydrate-bearing formations.

Suggested Citation

  • Wang, Yi & Pan, Mengdi & Mayanna, Sathish & Schleicher, Anja M. & Spangenberg, Erik & Schicks, Judith M., 2020. "Reservoir formation damage during hydrate dissociation in sand-clay sediment from Qilian Mountain permafrost, China," Applied Energy, Elsevier, vol. 263(C).
  • Handle: RePEc:eee:appene:v:263:y:2020:i:c:s0306261920301318
    DOI: 10.1016/j.apenergy.2020.114619
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920301318
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114619?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koh, Dong-Yeun & Kang, Hyery & Lee, Jong-Won & Park, Youngjune & Kim, Se-Joon & Lee, Jaehyoung & Lee, Joo Yong & Lee, Huen, 2016. "Energy-efficient natural gas hydrate production using gas exchange," Applied Energy, Elsevier, vol. 162(C), pages 114-130.
    2. Wu, Zhaoran & Li, Yanghui & Sun, Xiang & Wu, Peng & Zheng, Jianan, 2018. "Experimental study on the effect of methane hydrate decomposition on gas phase permeability of clayey sediments," Applied Energy, Elsevier, vol. 230(C), pages 1304-1310.
    3. Judith M. Schicks & Erik Spangenberg & Ronny Giese & Manja Luzi-Helbing & Mike Priegnitz & Bettina Beeskow-Strauch, 2013. "A Counter-Current Heat-Exchange Reactor for the Thermal Stimulation of Hydrate-Bearing Sediments," Energies, MDPI, vol. 6(6), pages 1-15, June.
    4. Li, Gang & Wu, Dan-Mei & Li, Xiao-Sen & Lv, Qiu-Nan & Li, Chao & Zhang, Yu, 2017. "Experimental measurement and mathematical model of permeability with methane hydrate in quartz sands," Applied Energy, Elsevier, vol. 202(C), pages 282-292.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Ruirui & Zhang, Luqing & Zhou, Jian & Han, Zhenhua & Pan, Zhejun & Schüttrumpf, Holger, 2023. "Investigation on permeability anisotropy in unconsolidated hydrate-bearing sediments based on pore-scale numerical simulation: Effect of mineral particle shape and pore-filling," Energy, Elsevier, vol. 267(C).
    2. Kou, Xuan & Feng, Jing-Chun & Li, Xiao-Sen & Wang, Yi & Chen, Zhao-Yang, 2022. "Formation mechanism of heterogeneous hydrate-bearing sediments," Applied Energy, Elsevier, vol. 326(C).
    3. Golsanami, Naser & Jayasuriya, Madusanka N. & Yan, Weichao & Fernando, Shanilka G. & Liu, Xuefeng & Cui, Likai & Zhang, Xuepeng & Yasin, Qamar & Dong, Huaimin & Dong, Xu, 2022. "Characterizing clay textures and their impact on the reservoir using deep learning and Lattice-Boltzmann simulation applied to SEM images," Energy, Elsevier, vol. 240(C).
    4. Zhao, Yapeng & Liu, Jiaqi & Sang, Songkui & Hua, Likun & Kong, Liang & Zeng, Zhaoyuan & Yuan, Qingmeng, 2023. "Experimental investigation on the permeability characteristics of methane hydrate-bearing clayey-silty sediments considering various factors," Energy, Elsevier, vol. 269(C).
    5. Zhao, Yapeng & Kong, Liang & Liu, Jiaqi & Sang, Songkui & Zeng, Zhaoyuan & Wang, Ning & Yuan, Qingmeng, 2023. "Permeability properties of natural gas hydrate-bearing sediments considering dynamic stress coupling: A comprehensive experimental investigation," Energy, Elsevier, vol. 283(C).
    6. Wei, Rupeng & Xia, Yongqiang & Wang, Zifei & Li, Qingping & Lv, Xin & Leng, Shudong & Zhang, Lunxiang & Zhang, Yi & Xiao, Bo & Yang, Shengxiong & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2022. "Long-term numerical simulation of a joint production of gas hydrate and underlying shallow gas through dual horizontal wells in the South China Sea," Applied Energy, Elsevier, vol. 320(C).
    7. Li, Rui & Cao, Bo-Jian & Chen, Hong-Nan & Wang, Xiao-Hui & Sun, Yi-Fei & Sun, Chang-Yu & Liu, Bei & Pang, Wei-Xin & Li, Qing-Ping & Chen, Guang-Jin, 2022. "Experimental study on the dual-gas co-production from hydrate deposit and its underlying gas reservoir," Energy, Elsevier, vol. 258(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Bingbing & Sun, Huiru & Zhou, Hang & Yang, Mingjun & Wang, Dayong, 2019. "Effects of pressure and sea water flow on natural gas hydrate production characteristics in marine sediment," Applied Energy, Elsevier, vol. 238(C), pages 274-283.
    2. Fang Jin & Feng Huang & Guobiao Zhang & Bing Li & Jianguo Lv, 2023. "Experimental Investigation on Deformation and Permeability of Clayey–Silty Sediment during Hydrate Dissociation by Depressurization," Energies, MDPI, vol. 16(13), pages 1-15, June.
    3. Li, Gang & Wu, Dan-Mei & Li, Xiao-Sen & Lv, Qiu-Nan & Li, Chao & Zhang, Yu, 2017. "Experimental measurement and mathematical model of permeability with methane hydrate in quartz sands," Applied Energy, Elsevier, vol. 202(C), pages 282-292.
    4. Guo, Zeyu & Fang, Qidong & Nong, Mingyan & Ren, Xingwei, 2021. "A novel Kozeny-Carman-based permeability model for hydrate-bearing sediments," Energy, Elsevier, vol. 234(C).
    5. Wang, Bin & Dong, Hongsheng & Liu, Yanzhen & Lv, Xin & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2018. "Evaluation of thermal stimulation on gas production from depressurized methane hydrate deposits☆," Applied Energy, Elsevier, vol. 227(C), pages 710-718.
    6. Li, Bo & Liang, Yun-Pei & Li, Xiao-Sen & Zhou, Lei, 2016. "A pilot-scale study of gas production from hydrate deposits with two-spot horizontal well system," Applied Energy, Elsevier, vol. 176(C), pages 12-21.
    7. Guo, Zeyu & Chen, Xin & Wang, Bo & Ren, Xingwei, 2023. "Two-phase relative permeability of hydrate-bearing sediments: A theoretical model," Energy, Elsevier, vol. 275(C).
    8. Jianchun Xu & Ziwei Bu & Hangyu Li & Xiaopu Wang & Shuyang Liu, 2022. "Permeability Models of Hydrate-Bearing Sediments: A Comprehensive Review with Focus on Normalized Permeability," Energies, MDPI, vol. 15(13), pages 1-65, June.
    9. Lei, Xin & Yao, Yanbin & Sun, Xiaoxiao & Wen, Zhiang & Ma, Yuhua, 2022. "Permeability change with respect to different hydrate saturation in clayey-silty sediments," Energy, Elsevier, vol. 254(PA).
    10. Xiang-Ru Chen & Xiao-Sen Li & Zhao-Yang Chen & Yu Zhang & Ke-Feng Yan & Qiu-Nan Lv, 2015. "Experimental Investigation into the Combustion Characteristics of Propane Hydrates in Porous Media," Energies, MDPI, vol. 8(2), pages 1-14, February.
    11. Han Xue & Linhai Li & Yiqun Wang & Youhua Lu & Kai Cui & Zhiyuan He & Guoying Bai & Jie Liu & Xin Zhou & Jianjun Wang, 2024. "Probing the critical nucleus size in tetrahydrofuran clathrate hydrate formation using surface-anchored nanoparticles," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Wu, Zhaoran & Liu, Weiguo & Zheng, Jianan & Li, Yanghui, 2020. "Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments," Applied Energy, Elsevier, vol. 261(C).
    13. Li, Nan & Zhang, Jie & Xia, Ming-Ji & Sun, Chang-Yu & Liu, Yan-Sheng & Chen, Guang-Jin, 2021. "Gas production from heterogeneous hydrate-bearing sediments by depressurization in a large-scale simulator," Energy, Elsevier, vol. 234(C).
    14. Yang, Mingjun & Dong, Shuang & Zhao, Jie & Zheng, Jia-nan & Liu, Zheyuan & Song, Yongchen, 2021. "Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 232(C).
    15. Mok, Junghoon & Choi, Wonjung & Seo, Yongwon, 2021. "The dual-functional roles of N2 gas for the exploitation of natural gas hydrates: An inhibitor for dissociation and an external guest for replacement," Energy, Elsevier, vol. 232(C).
    16. Dong, Shuang & Yang, Mingjun & Chen, Mingkun & Zheng, Jia-nan & Song, Yongchen, 2022. "Thermodynamics analysis and temperature response mechanism during methane hydrate production by depressurization," Energy, Elsevier, vol. 241(C).
    17. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2017. "Experimental investigation of optimization of well spacing for gas recovery from methane hydrate reservoir in sandy sediment by heat stimulation," Applied Energy, Elsevier, vol. 207(C), pages 562-572.
    18. Yun-Pei Liang & Xiao-Sen Li & Bo Li, 2015. "Assessment of Gas Production Potential from Hydrate Reservoir in Qilian Mountain Permafrost Using Five-Spot Horizontal Well System," Energies, MDPI, vol. 8(10), pages 1-22, September.
    19. Sungil Kim & Kyungbook Lee & Minhui Lee & Taewoong Ahn, 2020. "Data-Driven Three-Phase Saturation Identification from X-ray CT Images with Critical Gas Hydrate Saturation," Energies, MDPI, vol. 13(21), pages 1-19, November.
    20. Kou, Xuan & Li, Xiao-Sen & Wang, Yi & Liu, Jian-Wu & Chen, Zhao-Yang, 2021. "Heterogeneity of hydrate-bearing sediments: Definition and effects on fluid flow properties," Energy, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:263:y:2020:i:c:s0306261920301318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.