IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipas0360544222013202.html
   My bibliography  Save this article

Permeability change with respect to different hydrate saturation in clayey-silty sediments

Author

Listed:
  • Lei, Xin
  • Yao, Yanbin
  • Sun, Xiaoxiao
  • Wen, Zhiang
  • Ma, Yuhua

Abstract

The successful pilot trial of methane hydrate production in the South China Sea has proven the technical feasibility of natural gas hydrates (NGHs) exploitation in clayey-silty reservoirs. As a key issue of NGHs exploitation in clayey-silty sediments, the variation of permeability with hydrate saturation (Sh) has not been thoroughly studied. In this study, a triaxial core holder was designed to simulate the synthesis and dissociation of gas hydrates in a clayey-silty core plug sample. In the process of hydrate synthesis and multi-step dissociation, the water content and distribution in different pores were quantitatively determined by a nuclear magnetic resonance (NMR) spectrometer, and the variation of water content under different Sh was successively monitored. Meanwhile, in each depressurization phase, the gas permeabilities k(Sh) with respect to different Sh were measured under constant effective stress. Results highlight that the change of k(Sh) is more prevalent in clayey-silty sediments than that in sandstones. As Sh increases from 0 to 10.43%, the permeability ratio (k(Sh) to sedimentary permeability ks) in clayey-silty sediments decreases to 0.01–0.02; whereas in sandstones, the permeability ratio falls between 0.4 and 0.8. To predicate the permeability change in clayey-silty sediments, the previous Cubic model is improved and a Power-exponential model is presented. In the updated model, the variable of power parameter n can characterize different reservoir types. Specifically, in artificial sandstones, sandpacks or sandy reservoirs, the n values range from 3.1 to 8.3, while in clay packs or clayey-silty sediments, the n values are from 19.1 to 30.7. The Power-exponential model provides reference values for the prediction of different types of gas hydrate reservoirs such as permafrost and marine sediments.

Suggested Citation

  • Lei, Xin & Yao, Yanbin & Sun, Xiaoxiao & Wen, Zhiang & Ma, Yuhua, 2022. "Permeability change with respect to different hydrate saturation in clayey-silty sediments," Energy, Elsevier, vol. 254(PA).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222013202
    DOI: 10.1016/j.energy.2022.124417
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222013202
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124417?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Zhaoran & Liu, Weiguo & Zheng, Jianan & Li, Yanghui, 2020. "Effect of methane hydrate dissociation and reformation on the permeability of clayey sediments," Applied Energy, Elsevier, vol. 261(C).
    2. Wu, Zhaoran & Li, Yanghui & Sun, Xiang & Wu, Peng & Zheng, Jianan, 2018. "Experimental study on the effect of methane hydrate decomposition on gas phase permeability of clayey sediments," Applied Energy, Elsevier, vol. 230(C), pages 1304-1310.
    3. Jianliang Ye & Xuwen Qin & Haijun Qiu & Wenwei Xie & Hongfeng Lu & Cheng Lu & Jianhou Zhou & Jiyong Liu & Tianbang Yang & Jun Cao & Rina Sa, 2018. "Data Report: Molecular and Isotopic Compositions of the Extracted Gas from China’s First Offshore Natural Gas Hydrate Production Test in South China Sea," Energies, MDPI, vol. 11(10), pages 1-7, October.
    4. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    5. He, Juan & Li, Xiaosen & Chen, Zhaoyang & You, Changyu & Peng, Hao & Zhang, Zhiwen, 2022. "Sustainable hydrate production using intermittent depressurization in hydrate-bearing reservoirs connected with water layers," Energy, Elsevier, vol. 238(PA).
    6. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Yoshida, Akihiro & Wang, Dayong & Song, Yongchen, 2019. "Gas recovery enhancement from methane hydrate reservoir in the Nankai Trough using vertical wells," Energy, Elsevier, vol. 166(C), pages 834-844.
    7. Liu, Weiguo & Wu, Zhaoran & Li, Jiajie & Zheng, Jianan & Li, Yanghui, 2020. "The seepage characteristics of methane hydrate-bearing clayey sediments under various pressure gradients," Energy, Elsevier, vol. 191(C).
    8. Li, Gang & Wu, Dan-Mei & Li, Xiao-Sen & Lv, Qiu-Nan & Li, Chao & Zhang, Yu, 2017. "Experimental measurement and mathematical model of permeability with methane hydrate in quartz sands," Applied Energy, Elsevier, vol. 202(C), pages 282-292.
    9. Yang, Mingjun & Zheng, Jia-nan & Gao, Yi & Ma, Zhanquan & Lv, Xin & Song, Yongchen, 2019. "Dissociation characteristics of methane hydrates in South China Sea sediments by depressurization," Applied Energy, Elsevier, vol. 243(C), pages 266-273.
    10. Wang, Jiaqi & Zhang, Lunxiang & Ge, Kun & Zhao, Jiafei & Song, Yongcheng, 2020. "Characterizing anisotropy changes in the permeability of hydrate sediment," Energy, Elsevier, vol. 205(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang Jin & Feng Huang & Guobiao Zhang & Bing Li & Jianguo Lv, 2023. "Experimental Investigation on Deformation and Permeability of Clayey–Silty Sediment during Hydrate Dissociation by Depressurization," Energies, MDPI, vol. 16(13), pages 1-15, June.
    2. Zhang, Junfeng & Yan, Detian & Zhou, Sandong & Wang, Hua & Deng, Yong & Liu, Entao & Song, Guangzeng, 2023. "Sedimentological and diagenetic effects on petrophysical characteristics and hydraulic flow units of Zhujiang sandstones in the Pearl River Mouth Basin, south China Sea," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Zeyu & Fang, Qidong & Nong, Mingyan & Ren, Xingwei, 2021. "A novel Kozeny-Carman-based permeability model for hydrate-bearing sediments," Energy, Elsevier, vol. 234(C).
    2. Jianchun Xu & Ziwei Bu & Hangyu Li & Xiaopu Wang & Shuyang Liu, 2022. "Permeability Models of Hydrate-Bearing Sediments: A Comprehensive Review with Focus on Normalized Permeability," Energies, MDPI, vol. 15(13), pages 1-65, June.
    3. Guo, Zeyu & Chen, Xin & Wang, Bo & Ren, Xingwei, 2023. "Two-phase relative permeability of hydrate-bearing sediments: A theoretical model," Energy, Elsevier, vol. 275(C).
    4. Chen, Chang & Zhang, Yu & Li, Xiaosen & Gao, Fei & Chen, Yuru & Chen, Zhaoyang, 2024. "Experimental investigation into gas production from methane hydrate in sediments with different contents of illite clay by depressurization," Energy, Elsevier, vol. 296(C).
    5. Fang Jin & Feng Huang & Guobiao Zhang & Bing Li & Jianguo Lv, 2023. "Experimental Investigation on Deformation and Permeability of Clayey–Silty Sediment during Hydrate Dissociation by Depressurization," Energies, MDPI, vol. 16(13), pages 1-15, June.
    6. Gong, Guangjun & Yang, Mingjun & Pang, Weixin & Zheng, Jia-nan & Song, Yongchen, 2024. "Dynamic optimization of real-time depressurization pathways in hydrate-bearing South Sea clay reservoirs," Energy, Elsevier, vol. 292(C).
    7. Zhao, Jie & Zheng, Jia-nan & Ma, Shihui & Song, Yongchen & Yang, Mingjun, 2020. "Formation and production characteristics of methane hydrates from marine sediments in a core holder," Applied Energy, Elsevier, vol. 275(C).
    8. Cui, Jin-Long & Cheng, Li-Wei & Kan, Jing-Yu & Pang, Wei-Xin & Gu, Jun-Nan & Li, Kun & Wang, Ling-Ban & Sun, Chang-Yu & Wang, Xiao-Hui & Chen, Guang-Jin & Li, Xing-Xun, 2021. "Study on the spatial differences of methane hydrate dissociation process by depressurization using an L-shape simulator," Energy, Elsevier, vol. 228(C).
    9. Zhang, Zhaobin & Xu, Tao & Li, Shouding & Li, Xiao & Briceño Montilla, Maryelin Josefina & Lu, Cheng, 2023. "Comprehensive effects of heat and flow on the methane hydrate dissociation in porous media," Energy, Elsevier, vol. 265(C).
    10. Cheng, Fanbao & Wu, Zhaoran & Sun, Xiang & Shen, Shi & Wu, Peng & Liu, Weiguo & Chen, Bingbing & Liu, Xuanji & Li, Yanghui, 2023. "Compression-induced dynamic change in effective permeability of hydrate-bearing sediments during hydrate dissociation by depressurization," Energy, Elsevier, vol. 264(C).
    11. Xue, Kunpeng & Liu, Yu & Yu, Tao & Yang, Lei & Zhao, Jiafei & Song, Yongchen, 2023. "Numerical simulation of gas hydrate production in shenhu area using depressurization: The effect of reservoir permeability heterogeneity," Energy, Elsevier, vol. 271(C).
    12. Wang, Xiaochu & Sun, Youhong & Li, Bing & Zhang, Guobiao & Guo, Wei & Li, Shengli & Jiang, Shuhui & Peng, Saiyu & Chen, Hangkai, 2023. "Reservoir stimulation of marine natural gas hydrate-a review," Energy, Elsevier, vol. 263(PE).
    13. Fang, Bin & Lü, Tao & Li, Wei & Moultos, Othonas A. & Vlugt, Thijs J.H. & Ning, Fulong, 2024. "Microscopic insights into poly- and mono-crystalline methane hydrate dissociation in Na-montmorillonite pores at static and dynamic fluid conditions," Energy, Elsevier, vol. 288(C).
    14. Zhang, Yiqun & Zhang, Panpan & Hui, Chengyu & Tian, Shouceng & Zhang, Bo, 2023. "Numerical analysis of the geomechanical responses during natural gas hydrate production by multilateral wells," Energy, Elsevier, vol. 269(C).
    15. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Wang, Dayong & Song, Yongchen, 2021. "Numerical evaluation of free gas accumulation behavior in a reservoir during methane hydrate production using a multiple-well system," Energy, Elsevier, vol. 218(C).
    16. Peng, Hao & Li, Xiaosen & Chen, Zhaoyang & Zhang, Yu & Ji, Hongfei & Weng, Yifan, 2024. "Effect of gravel pack permeability on horizontal well productivity loss under secondary methane hydrate formation: Experimental optimization of 3D randomly distributed mixed sand pack," Applied Energy, Elsevier, vol. 371(C).
    17. Ye, Hongyu & Wu, Xuezhen & Guo, Gaoqiang & Huang, Qichao & Chen, Jingyu & Li, Dayong, 2023. "Application of the enlarged wellbore diameter to gas production enhancement from natural gas hydrates by complex structure well in the shenhu sea area," Energy, Elsevier, vol. 264(C).
    18. Gu, Yuhang & Sun, Jiaxin & Qin, Fanfan & Ning, Fulong & Cao, Xinxin & Liu, Tianle & Qin, Shunbo & Zhang, Ling & Jiang, Guosheng, 2023. "Enhancing gas recovery from natural gas hydrate reservoirs in the eastern Nankai Trough: Deep depressurization and underburden sealing," Energy, Elsevier, vol. 262(PB).
    19. Zhang, Panpan & Tian, Shouceng & Zhang, Yiqun & Li, Gensheng & Zhang, Wenhong & Khan, Waleed Ali & Ma, Luyao, 2021. "Numerical simulation of gas recovery from natural gas hydrate using multi-branch wells: A three-dimensional model," Energy, Elsevier, vol. 220(C).
    20. Yu, Tao & Guan, Guoqing & Abudula, Abuliti, 2019. "Production performance and numerical investigation of the 2017 offshore methane hydrate production test in the Nankai Trough of Japan," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pa:s0360544222013202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.