IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v114y2016icp457-464.html
   My bibliography  Save this article

Scrap tire pyrolysis using a new type two-stage pyrolyzer: Effects of dolomite and olivine on producing a low-sulfur pyrolysis oil

Author

Listed:
  • Choi, Gyung-Goo
  • Oh, Seung-Jin
  • Kim, Joo-Sik

Abstract

Scrap tire pyrolysis was performed using a two-stage pyrolyzer consisting of an auger reactor and a fluidized bed reactor to produce a low-sulfur pyrolysis oil. In the experiments, the effect of the residence time of the feed material in the auger reactor was investigated at ∼300 (auger reactor) and 500 °C (fluidized bed reactor). In addition, natural dolomite and olivine and calcined dolomite and olivine were used as the fluidized bed materials to examine their effects on reducing the sulfur content of pyrolysis oil. In the experiments, the yields of the oil from the auger reactor were 1.4–3.7 wt%, and it was enriched with dl-limonene whose content in the oil was 40–50 wt%. The yields of the oil from the fluidized bed reactor were 42–46 wt%. The optimum residence time of the feed material in the auger reactor turned out to be 3.5 min. Calcined dolomite and olivine significantly decreased the sulfur content of pyrolysis oil. Metal oxides of the additives appeared to react with H2S to form metal sulfides. The sulfur content of pyrolysis oil obtained with calcined olivine was 0.45 wt%.

Suggested Citation

  • Choi, Gyung-Goo & Oh, Seung-Jin & Kim, Joo-Sik, 2016. "Scrap tire pyrolysis using a new type two-stage pyrolyzer: Effects of dolomite and olivine on producing a low-sulfur pyrolysis oil," Energy, Elsevier, vol. 114(C), pages 457-464.
  • Handle: RePEc:eee:energy:v:114:y:2016:i:c:p:457-464
    DOI: 10.1016/j.energy.2016.08.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216311239
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.08.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martínez, Juan Daniel & Puy, Neus & Murillo, Ramón & García, Tomás & Navarro, María Victoria & Mastral, Ana Maria, 2013. "Waste tyre pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 179-213.
    2. Choi, Gyung-Goo & Oh, Seung-Jin & Kim, Joo-Sik, 2016. "Non-catalytic pyrolysis of scrap tires using a newly developed two-stage pyrolyzer for the production of a pyrolysis oil with a low sulfur content," Applied Energy, Elsevier, vol. 170(C), pages 140-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
    2. Choi, Gyung-Goo & Oh, Seung-Jin & Kim, Joo-Sik, 2017. "Clean pyrolysis oil from a continuous two-stage pyrolysis of scrap tires using in-situ and ex-situ desulfurization," Energy, Elsevier, vol. 141(C), pages 2234-2241.
    3. Alvarez, J. & Lopez, G. & Amutio, M. & Mkhize, N.M. & Danon, B. & van der Gryp, P. & Görgens, J.F. & Bilbao, J. & Olazar, M., 2017. "Evaluation of the properties of tyre pyrolysis oils obtained in a conical spouted bed reactor," Energy, Elsevier, vol. 128(C), pages 463-474.
    4. Park, Ki-Bum & Jeong, Yong-Seong & Guzelciftci, Begum & Kim, Joo-Sik, 2019. "Characteristics of a new type continuous two-stage pyrolysis of waste polyethylene," Energy, Elsevier, vol. 166(C), pages 343-351.
    5. Cho, Seong-Heon & Oh, Jeong-Ik & Jung, Sungyup & Park, Young-Kwon & Tsang, Yiu Fai & Ok, Yong Sik & Kwon, Eilhann E., 2020. "Catalytic pyrolytic platform for scrap tires using CO2 and steel slag," Applied Energy, Elsevier, vol. 259(C).
    6. Zhang, Menghui & Qi, Yongfeng & Zhang, Wan & Wang, Meiting & Li, Jingyi & Lu, Yi & Zhang, Sheng & He, Jiazheng & Cao, Hao & Tao, Xuan & Xu, Hanlu & Zhang, Sheng, 2024. "A review on waste tires pyrolysis for energy and material recovery from the optimization perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    7. Arabiourrutia, Miriam & Lopez, Gartzen & Artetxe, Maite & Alvarez, Jon & Bilbao, Javier & Olazar, Martin, 2020. "Waste tyre valorization by catalytic pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
    2. Cho, Seong-Heon & Oh, Jeong-Ik & Jung, Sungyup & Park, Young-Kwon & Tsang, Yiu Fai & Ok, Yong Sik & Kwon, Eilhann E., 2020. "Catalytic pyrolytic platform for scrap tires using CO2 and steel slag," Applied Energy, Elsevier, vol. 259(C).
    3. Arabiourrutia, Miriam & Lopez, Gartzen & Artetxe, Maite & Alvarez, Jon & Bilbao, Javier & Olazar, Martin, 2020. "Waste tyre valorization by catalytic pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    4. Czajczyńska, Dina & Krzyżyńska, Renata & Jouhara, Hussam & Spencer, Nik, 2017. "Use of pyrolytic gas from waste tire as a fuel: A review," Energy, Elsevier, vol. 134(C), pages 1121-1131.
    5. Alvarez, J. & Lopez, G. & Amutio, M. & Mkhize, N.M. & Danon, B. & van der Gryp, P. & Görgens, J.F. & Bilbao, J. & Olazar, M., 2017. "Evaluation of the properties of tyre pyrolysis oils obtained in a conical spouted bed reactor," Energy, Elsevier, vol. 128(C), pages 463-474.
    6. Jouhara, H. & Nannou, T.K. & Anguilano, L. & Ghazal, H. & Spencer, N., 2017. "Heat pipe based municipal waste treatment unit for home energy recovery," Energy, Elsevier, vol. 139(C), pages 1210-1230.
    7. Policella, Matteo & Wang, Zhiwei & Burra, Kiran. G. & Gupta, Ashwani K., 2019. "Characteristics of syngas from pyrolysis and CO2-assisted gasification of waste tires," Applied Energy, Elsevier, vol. 254(C).
    8. Choi, Gyung-Goo & Oh, Seung-Jin & Kim, Joo-Sik, 2016. "Non-catalytic pyrolysis of scrap tires using a newly developed two-stage pyrolyzer for the production of a pyrolysis oil with a low sulfur content," Applied Energy, Elsevier, vol. 170(C), pages 140-147.
    9. Zhang, Pengchao & Hu, Hongyun & Tang, Hua & Yang, Yuhan & Liu, Huan & Lu, Qiang & Li, Xian & Worasuwannarak, Nakorn & Yao, Hong, 2019. "In-depth experimental study of pyrolysis characteristics of raw and cooking treated shrimp shell samples," Renewable Energy, Elsevier, vol. 139(C), pages 730-738.
    10. Žvar Baškovič, Urban & Vihar, Rok & Seljak, Tine & Katrašnik, Tomaž, 2017. "Feasibility analysis of 100% tire pyrolysis oil in a common rail Diesel engine," Energy, Elsevier, vol. 137(C), pages 980-990.
    11. Zhang, Menghui & Qi, Yongfeng & Zhang, Wan & Wang, Meiting & Li, Jingyi & Lu, Yi & Zhang, Sheng & He, Jiazheng & Cao, Hao & Tao, Xuan & Xu, Hanlu & Zhang, Sheng, 2024. "A review on waste tires pyrolysis for energy and material recovery from the optimization perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    12. Subramanian, Avinash S.R. & Gundersen, Truls & Adams, Thomas A., 2021. "Optimal design and operation of a waste tire feedstock polygeneration system," Energy, Elsevier, vol. 223(C).
    13. Hita, Idoia & Arabiourrutia, Miriam & Olazar, Martin & Bilbao, Javier & Arandes, José María & Castaño, Pedro, 2016. "Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 745-759.
    14. Zeaiter, Joseph & Azizi, Fouad & Lameh, Mohammad & Milani, Dia & Ismail, Hamza Y. & Abbas, Ali, 2018. "Waste tire pyrolysis using thermal solar energy: An integrated approach," Renewable Energy, Elsevier, vol. 123(C), pages 44-51.
    15. Park, Ki-Bum & Jeong, Yong-Seong & Guzelciftci, Begum & Kim, Joo-Sik, 2019. "Characteristics of a new type continuous two-stage pyrolysis of waste polyethylene," Energy, Elsevier, vol. 166(C), pages 343-351.
    16. Martínez, Juan Daniel, 2021. "An overview of the end-of-life tires status in some Latin American countries: Proposing pyrolysis for a circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Farooq, Muhammad Zohaib & Zeeshan, Muhammad & Iqbal, Saeed & Ahmed, Naveed & Shah, Syed Asfand Yar, 2018. "Influence of waste tire addition on wheat straw pyrolysis yield and oil quality," Energy, Elsevier, vol. 144(C), pages 200-206.
    18. Li, Dan & Lei, Shijun & Lin, Fawei & Zhong, Lei & Ma, Wenchao & Chen, Guanyi, 2020. "Study of scrap tires pyrolysis – Products distribution and mechanism," Energy, Elsevier, vol. 213(C).
    19. Shah, Syed Asfand Yar & Zeeshan, Muhammad & Farooq, Muhammad Zohaib & Ahmed, Naveed & Iqbal, Naseem, 2019. "Co-pyrolysis of cotton stalk and waste tire with a focus on liquid yield quantity and quality," Renewable Energy, Elsevier, vol. 130(C), pages 238-244.
    20. Michal Holubčík & Ivana Klačková & Peter Ďurčanský, 2020. "Pyrolysis Conversion of Polymer Wastes to Noble Fuels in Conditions of the Slovak Republic," Energies, MDPI, vol. 13(18), pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:114:y:2016:i:c:p:457-464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.