IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v259y2020ics0306261919318379.html
   My bibliography  Save this article

Experimental study of the anti-knock efficiency of high-octane fuels in spark ignited aircraft engine using response surface methodology

Author

Listed:
  • Kumar, Thanikasalam
  • Mohsin, Rahmat
  • Majid, Zulkifli Abd.
  • Ghafir, Mohammad Fahmi Abdul
  • Wash, Ananth Manickam

Abstract

Aviation gasoline contains tetraethyl lead to aid on knocking in spark-ignited aircraft engines. Tetraethyl lead in aviation gasoline is the cause of severe health effects and is considered as human carcinogenic compound. Piston aviation fuels initiative evaluated 245 unleaded fuels, but none could match all the performance regulations of aviation gasoline. In this study, optimisation of the knock-limited performance of 83 leaded/unleaded/blends was carried out. The input parameters were the fuels and engine speed. The output parameters were knock-limited data of brake horsepower, torque, brake mean effective pressure, brake specific fuel consumption and average air-to-fuel ratio. The engine speed was varied at 2350–2700 and the fuels were varied at eighty-three levels. The design matrix was selected based on one factor of response surface methodology which contained 581 experimental runs. Analysis of variance was performed on the models to validate the robustness of the model tested. Engine speed, type of fuel and average air-to-fuel ratio were set to be in range while brake horsepower, torque and brake mean effective pressure were maximised and brake specific fuel consumption was minimised. Confirmation test was carried out to validate the predicted and actual outcomes. Results indicated that when the engine was run with a speed of 2700 RPM, RSM AVGAS 100LL MS gave optimum solution with corresponding brake horsepower, torque, brake mean effective pressure, brake specific fuel consumption and average air-to-fuel ratio values of 292.837 Hp, 777.557 Nm, 1099.521 kPa, 0.271 kg/kW h and 13.044 respectively with a desirability of 0.972. The results indicated future focus of similar research into optimization of mid and low octane unleaded alternatives.

Suggested Citation

  • Kumar, Thanikasalam & Mohsin, Rahmat & Majid, Zulkifli Abd. & Ghafir, Mohammad Fahmi Abdul & Wash, Ananth Manickam, 2020. "Experimental study of the anti-knock efficiency of high-octane fuels in spark ignited aircraft engine using response surface methodology," Applied Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318379
    DOI: 10.1016/j.apenergy.2019.114150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919318379
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jia Liu & Jianguo Wang & Chunfai Leung & Feng Gao, 2018. "A Multi-Parameter Optimization Model for the Evaluation of Shale Gas Recovery Enhancement," Energies, MDPI, vol. 11(3), pages 1-29, March.
    2. Nazari, Laleh & Yuan, Zhongshun & Ray, Madhumita B. & Xu, Chunbao (Charles), 2017. "Co-conversion of waste activated sludge and sawdust through hydrothermal liquefaction: Optimization of reaction parameters using response surface methodology," Applied Energy, Elsevier, vol. 203(C), pages 1-10.
    3. Feng, Renhua & Fu, Jianqin & Yang, Jing & Wang, Yi & Li, Yangtao & Deng, Banglin & Liu, Jingping & Zhang, Daming, 2015. "Combustion and emissions study on motorcycle engine fueled with butanol-gasoline blend," Renewable Energy, Elsevier, vol. 81(C), pages 113-122.
    4. White, M.T. & Oyewunmi, O.A. & Chatzopoulou, M.A. & Pantaleo, A.M. & Haslam, A.J. & Markides, C.N., 2018. "Computer-aided working-fluid design, thermodynamic optimisation and thermoeconomic assessment of ORC systems for waste-heat recovery," Energy, Elsevier, vol. 161(C), pages 1181-1198.
    5. Singh, Yashvir & Sharma, Abhishek & Tiwari, Sumit & Singla, Amneesh, 2019. "Optimization of diesel engine performance and emission parameters employing cassia tora methyl esters-response surface methodology approach," Energy, Elsevier, vol. 168(C), pages 909-918.
    6. Sakthivel, R. & Ramesh, K. & Joseph John Marshal, S. & Sadasivuni, Kishor Kumar, 2019. "Prediction of performance and emission characteristics of diesel engine fuelled with waste biomass pyrolysis oil using response surface methodology," Renewable Energy, Elsevier, vol. 136(C), pages 91-103.
    7. Yusri, I.M. & Abdul Majeed, A.P.P. & Mamat, R. & Ghazali, M.F. & Awad, Omar I. & Azmi, W.H., 2018. "A review on the application of response surface method and artificial neural network in engine performance and exhaust emissions characteristics in alternative fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 665-686.
    8. Ganapathy, T. & Murugesan, K. & Gakkhar, R.P., 2009. "Performance optimization of Jatropha biodiesel engine model using Taguchi approach," Applied Energy, Elsevier, vol. 86(11), pages 2476-2486, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sui, Zengguang & Lin, Haosheng & Sun, Qin & Dong, Kaijun & Wu, Wei, 2024. "Multi-objective optimization of efficient liquid cooling-based battery thermal management system using hybrid manifold channels," Applied Energy, Elsevier, vol. 371(C).
    2. Yan, Weichao & Meng, Xiangzhao & Cui, Xin & Liu, Yilin & Chen, Qian & Jin, Liwen, 2022. "Evaporative cooling performance prediction and multi-objective optimization for hollow fiber membrane module using response surface methodology," Applied Energy, Elsevier, vol. 325(C).
    3. Ramozon Khujamberdiev & Haeng Muk Cho, 2024. "Biofuels in Aviation: Exploring the Impact of Sustainable Aviation Fuels in Aircraft Engines," Energies, MDPI, vol. 17(11), pages 1-17, May.
    4. Yan, Weichao & Yang, Chuanjun & Liu, Yahui & Zhang, Yu & Liu, Yilin & Cui, Xin & Meng, Xiangzhao & Jin, Liwen, 2024. "A design optimization framework for vacuum-assisted hollow fiber membrane integrated evaporative water coolers," Renewable Energy, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. How, H.G. & Teoh, Y.H. & Krishnan, B. Navaneetha & Le, T.D. & Nguyen, H.T. & Prabhu, C., 2021. "Prediction of optimum Palm Oil Methyl Ester fuel blend for compression ignition engine using Response Surface Methodology," Energy, Elsevier, vol. 234(C).
    2. Varuvel, Edwin Geo & Seetharaman, Sathyanarayanan & Joseph Shobana Bai, Femilda Josephin & Devarajan, Yuvarajan & Balasubramanian, Dhinesh, 2023. "Development of artificial neural network and response surface methodology model to optimize the engine parameters of rubber seed oil – Hydrogen on PCCI operation," Energy, Elsevier, vol. 283(C).
    3. Marco Bietresato & Carlo Caligiuri & Anna Bolla & Massimiliano Renzi & Fabrizio Mazzetto, 2019. "Proposal of a Predictive Mixed Experimental- Numerical Approach for Assessing the Performance of Farm Tractor Engines Fuelled with Diesel- Biodiesel-Bioethanol Blends," Energies, MDPI, vol. 12(12), pages 1-45, June.
    4. Saiteja, Pajarla & Ashok, B., 2022. "Study on interactive effects of CRDi engine operating parameters through RSM based multi-objective optimization technique for biofuel application," Energy, Elsevier, vol. 255(C).
    5. Suman Dey & Akhilendra Pratap Singh & Sameer Sheshrao Gajghate & Sagnik Pal & Bidyut Baran Saha & Madhujit Deb & Pankaj Kumar Das, 2023. "Optimization of CI Engine Performance and Emissions Using Alcohol–Biodiesel Blends: A Regression Analysis Approach," Sustainability, MDPI, vol. 15(20), pages 1-14, October.
    6. Solmaz, Hamit & Safieddin Ardebili, Seyed Mohammad & Aksoy, Fatih & Calam, Alper & Yılmaz, Emre & Arslan, Muhammed, 2020. "Optimization of the operating conditions of a beta-type rhombic drive stirling engine by using response surface method," Energy, Elsevier, vol. 198(C).
    7. Singh, Yashvir & Sharma, Abhishek & Tiwari, Sumit & Singla, Amneesh, 2019. "Optimization of diesel engine performance and emission parameters employing cassia tora methyl esters-response surface methodology approach," Energy, Elsevier, vol. 168(C), pages 909-918.
    8. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
    9. Babras Khan & Man-Hoe Kim, 2022. "Energy and Exergy Analyses of a Novel Combined Heat and Power System Operated by a Recuperative Organic Rankine Cycle Integrated with a Water Heating System," Energies, MDPI, vol. 15(18), pages 1-19, September.
    10. Pang, Wancheng & Hou, Dejia & Ke, Jingwen & Chen, Jiangshan & Holtzapple, Mark T. & Tomberlin, Jeffery K. & Chen, Huanchun & Zhang, Jibin & Li, Qing, 2020. "Production of biodiesel from CO2 and organic wastes by fermentation and black soldier fly," Renewable Energy, Elsevier, vol. 149(C), pages 1174-1181.
    11. Bose, Probir Kumar & Deb, Madhujit & Banerjee, Rahul & Majumder, Arindam, 2013. "Multi objective optimization of performance parameters of a single cylinder diesel engine running with hydrogen using a Taguchi-fuzzy based approach," Energy, Elsevier, vol. 63(C), pages 375-386.
    12. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    13. Dwivedi, Gaurav & Jain, Siddharth & Sharma, M.P., 2011. "Impact analysis of biodiesel on engine performance—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4633-4641.
    14. Ashok, B. & Usman, Kaisan Muhammad & Vignesh, R. & Umar, U.A., 2022. "Model-based injector control map development to improve CRDi engine performance and emissions for eucalyptus biofuel," Energy, Elsevier, vol. 246(C).
    15. Najafi, Gholamhassan & Ghobadian, Barat & Yusaf, Talal & Safieddin Ardebili, Seyed Mohammad & Mamat, Rizalman, 2015. "Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline–ethanol blended fuels using response surface methodology," Energy, Elsevier, vol. 90(P2), pages 1815-1829.
    16. İhsan Yanıkoğlu & Erinç Albey & Serkan Okçuoğlu, 2022. "Robust Parameter Design and Optimization for Quality Engineering," SN Operations Research Forum, Springer, vol. 3(1), pages 1-36, March.
    17. Kang, Sae Byul & Kim, Jong Jin & Im, Yong Hoon, 2013. "An experimental investigation of a direct burning of crude Jatropha oil (CJO) and pitch in a commercial boiler system," Renewable Energy, Elsevier, vol. 54(C), pages 8-12.
    18. Jia Liu & Jianguo Wang & Chunfai Leung & Feng Gao, 2018. "A Fully Coupled Numerical Model for Microwave Heating Enhanced Shale Gas Recovery," Energies, MDPI, vol. 11(6), pages 1-28, June.
    19. Dhamodaran, Gopinath & Esakkimuthu, Ganapathy Sundaram & Pochareddy, Yashwanth Kutti & Sivasubramanian, Harish, 2017. "Investigation of n-butanol as fuel in a four-cylinder MPFI SI engine," Energy, Elsevier, vol. 125(C), pages 726-735.
    20. Manimaran, Rajayokkiam & Mohanraj, Thangavelu & Venkatesan, Moorthy & Ganesan, Rajamohan & Balasubramanian, Dhinesh, 2022. "A computational technique for prediction and optimization of VCR engine performance and emission parameters fuelled with Trichosanthes cucumerina biodiesel using RSM with desirability function approac," Energy, Elsevier, vol. 254(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.